
NASA/CR-2000-210109

Description of the AILS Alerting Algorithm

Paul Samanant and Mike Jackson

Honeywell, Inc., Minneapolis, Minnesota

May 2000



The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counterpart of peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that complement the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home

Page at httpY/www.sti.nasa.gov

• Email your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI

Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320



NASA/CR-2000-210109

Description of the AILS Alerting Algorithm

Paul Samanant and Mike Jackson

Honeywell, Inc., Minneapolis, Minnesota

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Purchase Order L-10690

May 2000



Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171
(703) 605-6000



Table of Contents

LIST OF FIGURES ................................................................................................................................................. V

LIST OF TABLES .................................................................................................................................................. VII

1 INTRODUCTION AND OVERVIEW .......................................................................................................... 1

1.1 INTRODUCTION ........................................................................................................................................... 1

1.2 CHANGES TO THE AILS ALGORITHM ........................................................................................................ 1

1.3 DOCUMENT OVERVIEW (HOW TO USE THIS DOCUMENT) ..................................................................... 2

2 AILS ALGORITHM OVERVIEW ................................................................................................................ 4

2.1 GENERAL ALGORITHM DESCRIPTION ....................................................................................................... 4

2.2 ELLIPTICAL PROTECTION ZONE ................................................................................................................ 6

2.3 AILS FAN ...................................................................................................................................................... 6

2.4 AILS FORWARD PROJECTION ASSUMPTIONS ........................................................................................... 6

2.5 SNAPPING VS. ACTUAL STATES ................................................................................................................. 7

2.6 ON APPROACH/OFF APPROACH CRITERIA FOR SNAP DETERMINATION ............................................... 7

2.7 ON APPROACH/OFF APPROACH INTRUDER AND EVADER TRACK ......................................................... 8

2.8 ELLIPSE SIZE ADJUSTMENTS IF AIRCRAFT IS OFF APPROACH ............................................................... 8

2.9 PROTECTION ELLIPSE FRAME OF REFERENCE ......................................................................................... 9

2.10 PROTECTED ESCAPE ZONE (CURRENTLY DISABLED) ...................................................................... 10

2.11 AILS TURN TIME (CURRENTLY DISABLED) ...................................................................................... 12

2.12 TRACK RATE DEADBAND .................................................................................................................... 13

3 AILS COORDINATE FRAME DEFINITIONS ......................................................................................... 14

3.1 TRANSFORMATION FROM EARTH TO LOCAL COORDINATES .............................................................. 14

3.2 DEFINITION OF INTERNAL AILS COORDINATE SYSTEM ...................................................................... 14

3.3 SIDE AND DOWNRANGE VIEWS OF AILS INTERNAL COORDINATE SYSTEM ..................................... 16

3.4 TRANSFORMATION EQUATIONS BETWEEN PARALLEL RUNWAY COORDINATES ............................. 18

3.5 USE OF APPROACH DATA TO PERFORM CONVERSION TO AILS COORDINATES ................................ 19

4 AILS TOP LEVEL DESCRIPTION WITH FLOW CHARTS ................................................................ 22

4.1 AILS TOP LEVEL DESCRIPTION ............................................................................................................... 22

4.2 AILS ALGORITHM STRUCTURE AND FLOW CHARTS ............................................................................. 22

4.2.1 Larcalertjull Flowchart ................................................................................................................... 24

4.2.2 Scenario Setup (ilook blocks) Flowchart .......................................................................................... 25

4.2.3 Chkvertjull Flowchart ..................................................................................................................... 26

4.2.4 Chktrack_ull Flowchart ................................................................................................................... 27

4.2.5 Chktrackjull Subdiagram Flowchart ............................................................................................... 28

4.2.6 Chkrange_ull Flowchart .................................................................................................................. 29

5 AILS DATA AND PSEUDO CODE DESCRIPTIONS .............................................................................. 30

5.1 LARCALERT FULL AND TOP LEVEL AILS DESCRIPTIONS .................................................................... 30

5.1.1 Larcalertjull/AILS Input�Output Parameters Description .............................................................. 30



5.1.2 AILSLiteralsandIndices.................................................................................................................. 32

5.1.3 AILS Array Element Descriptions ..................................................................................................... 33

5.1.4 Larcalertjull Local Internal Variables Data Dictionary ................................................................ 36

5.1.5 Larcalertjull (AILS Executive) Algorithm Pseudo Code ................................................................. 39

5.2 SUBUNIT CHKVERT FULL DESCRIPTION ................................................................................................ 46

5.2.1 Subunit Chlo_ertjull Input Parameters ............................................................................................. 46

5.2.2 Subunit Chlo_ertjull Output Parameters .......................................................................................... 47

5.2.3 Subunit Chlo, ertjull Local Variables ............................................................................................... 47

5.2.4 Subunit Chlo_ertjull Algorithm Pseudo Code .................................................................................. 47

5.3 SUBUNIT CHKRANGE_FULL DESCRIPTION ............................................................................................. 48

5.3.1 Subunit Chkrangejull Input Parameters ......................................................................................... 49

5.3.2 Subunit Chkrangejull Output Parameters ....................................................................................... 50

5.3.3 Subunit Chkrangejull Local Variables ............................................................................................ 50

5.3.4 Subunit Chkrangejull Pseudocode .................................................................................................. 51

5.4 SUBUNIT CHKTRACK FULL DESCRIPTION ............................................................................................. 51

5.4.1 Subunit Chktrackjull Input Parameters ........................................................................................... 51

5.4.2 Subunit Chktrackjull Output Parameters ........................................................................................ 53

5.4.3 Subunit Chktrackjull Local Variables ............................................................................................. 53

5.4.4 Subunit Chktrack Full Algorithm Pseudocode ................................................................................. 54

6 AILS PRE-CALL AND POST CALL REQUIREMENTS AND RECOMMENDATIONS ................... 57

6.1 OVERVIEW AND FLOWCHART FOR AILS PRE AND POST-PROCESSING ............................................... 57

6.2 CALLING RATE FOR AILS ......................................................................................................................... 57

6.3 CONVERSION TO AILS COORDINATES ................................................................................................... 59

6.4 TRACK AND TRACK RATE DERIVATION ................................................................................................. 59

6.5 TRACK RATE FILTER ................................................................................................................................. 60

6.6 DATA INTEGRITY TEST ............................................................................................................................ 61

6.7 EXTRAPOLATE AND TIME ALIGN DATA ................................................................................................. 61

6.8 COMPUTE RANGE, RANGE RATE, AND BEARING TO THE POTENTIAL AILS AIRCRAFF ................... 62

6.9 DETERMINE AILS AIRCRAFF PAIRING .................................................................................................... 62

6.9.1 Range Pairs Test Code ...................................................................................................................... 63

6.10 ON-APPROACH/OFF APPROACH DETERMINATION ........................................................................... 65

6.11 ELLIPSE AND TIME PARAMETER ADJUSTMENTS .............................................................................. 65

6.12 DATA REQUIREMENTS SUMMARY AND DEFAULT VALUES ............................................................ 65

6.12.1 AILS Parameter Input Summary Table ............................................................................................. 65

6.12.2 Default AILS Alerting Parameter Values .......................................................................................... 66

6.12.3 Default AILS Algorithm Parameters ................................................................................................. 67

6.12.4 Default Protected Escape Zone Parameters ..................................................................................... 67

6.13 STATUS ARRAY INTERPRETATION ..................................................................................................... 67

6.14 STATIC VS DYNAMIC MEMORY ALLOCATION REQUIREMENTS FOR AILS .................................... 68

7 AILS EQUATIONS ....................................................................................................................................... 69

7.1 TURN RADIUS ............................................................................................................................................ 69

7.2 INSIDE A ROTATED ELLIPSE .................................................................................................................... 69

7.3 INSIDE ELLIPSE FOR FUTURE TRACK ..................................................................................................... 70

7.4 AILS FAN EQUATIONS .............................................................................................................................. 71

ii



8 APPENDIX A. ACRONYMS AND ABBREVIATIONS .......................................................................... 73

9 APPENDIX B. GLOSSARY ......................................................................................................................... 74

10 APPENDIX C. REFERENCES .................................................................................................................... 75

iii



iv



List of Figures

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2.1.1 AILS Fan and Intrusion Check Scenarios .............................................................................................. 5

2.9.1 Ellipse Slaving To Aircraft Frame vs Applvach Frame ...................................................................... 10

2.10.1 Protected Escape Zones ..................................................................................................................... 12

3.1.1 Transformation From Spherical Earth To Local Runway Coordinates ............................................... 14

3.2.1 AILS Runway Coordinate System ......................................................................................................... 15

3.3.1 Side View Of Ails Coordinate System ................................................................................................... 17

3.3.2 Downrange View Of Local AILS Coordinates ...................................................................................... 17

3.5.1 Key Approach Parameters ................................................................................................................... 20

4.2.1 Larcalert ffull Flow Chart .................................................................................................................... 24

4.2.2 Scenario Setup (ilook blocks) Flowchart ............................................................................................. 25

4.2.3 Chkvert ffull Flowchart ........................................................................................................................ 26

4.2.4 Chktrack ffull Flowchart ...................................................................................................................... 27

4.2.5 Subdiagram Chktrack ffull flow chart .................................................................................................. 28

4.2.6 Chkrangejull flow chart ...................................................................................................................... 29

6.2.1 Relevant Pre and Post Processing For Larcalertjull ......................................................................... 58

6.3.1 Com, ersion to AILS Coordinates .......................................................................................................... 59

6.5.1 Track Rate Filter. ................................................................................................................................. 60

7.2.1 Rotated Ellipse Coordinates ................................................................................................................ 69

7.4.1 Calculation of Position on Turn Arc .................................................................................................... 72

V



vi



List of Tables

Table 1.3.1 Document Reference Table ...................................................................................................................... 3

Table 2.1.1 AILS Alert Level Attributes ...................................................................................................................... 4

Table 2.1.2 Current AILS Alerting Parameters .......................................................................................................... 6

Table 2.8.1 On Applvach/Off Applvach Ellipse and Alert Determinations ............................................................... 9

Table 2.10.1 Protected Escape Zone Parameter Definition ..................................................................................... 11

Table 3.2.1 Definition Of AILS Runway Frame Position Variables ......................................................................... 16

Table 3.4.1 State Variable Transformations With NO Snap ..................................................................................... 18

Table 3.4.2 State Variable Transformations With Snap ........................................................................................... 18

Table 3.5.1 Definition Of Key AILS Applvach Related Parameters ........................................................................ 21

Table 4.2.1 AILS Major Functional Blocks and Routines ........................................................................................ 23

Table 5.1.1 Larcalertjull/AILS Input Output Variables Data Dictiona1:y .............................................................. 32

Table 5.1.2 AILS Indices and Literals Specifcations ................................................................................................ 33

Table 5.1.3 AILS Array Element Descriptions .......................................................................................................... 36

Table 5.1.4 AILS Local Variable Data Dictionary ................................................................................................... 39

Table 5.2.1 Subunit Chkvertjull Input Parameters ................................................................................................. 46

Table 5.2.2 Subunit Chkvertjull Output Parameters ............................................................................................... 47

Table 5.2.3 Subunit Chkvertjull Local Variables .................................................................................................... 47

Table 5.3.1 Subunit Chkrange Full Input Parameters ............................................................................................. 50

Table 5.3.2 Subunit Chkrange Full Output Parameters .......................................................................................... 50

Table 5.3.3 Subunit Chkrangejull Local Variables ................................................................................................. 50

Table 5.4.1 Subunit Chktrackjull Input Parameters ............................................................................................... 53

Table 5.4.2 Subunit Chktrackjull Output Parameters ............................................................................................. 53

Table 5.4.3 Subunit Chktrackjull Local Variables .................................................................................................. 53

Table 6.4.1 Equations For Track Rate Derivation ................................................................................................... 60

Table 6.9.1 Range Pairs Test Parameters ................................................................................................................. 63

Table 6.12.1 AILS Parameter Input Summary .......................................................................................................... 66

vii



Vlll



1 Introduction and Overview

1.1 Introduction

This document is a complete description of the Airborne Information for Lateral Spacing

(AILS) alerting algorithms. The documentation corresponds to the most current version of

AILS used in simulation at NASA Langley Research Center (LaRC) and in test flights with

NASA (B757 Aries) and Honeywell (Gulfstream IV) in CY99. The original AILS which has

been documented in Reference [3], had two versions of the algorithm: - "Full AILS" and

"Parameter AILS." The full version was intended for in-flight use, while the parameter version

was for lab testing only. This document only describes the current version of the full AILS

algorithm - the parameter AILS algorithm was not carried forward to match the full version.

Modifications to the original AILS were the result of simulation and analysis work performed at

Honeywell Technology Center and at NASA Langley Research Center. The analysis at

Honeywell focused on an assessment of the relative safety of the system by simulating many

scenarios. This analysis uncovered some weaknesses of the original algorithm related to the

circular shape of the protected region. The NASA simulation activities in the B757 Integrated

Flight Deck (IFD), part of the Research Simulation Integrated Laboratory (RSIL), focused on the

human factors aspects of the system design. These simulations helped tune the system

parameters for pilot acceptance. Both analyses performed suggested possible modifications to

the algorithms, and NASA and Honeywell engineers collaborated to agree on the changes to the

algorithms.

Additional changes to the AILS algorithms were required as the focus shifted from simulation

and analysis towards a real-world real-time implementation, such as dealing with non-parallel

runways, offset thresholds, and non-zero runway latitude, longitude and altitude.

The equations and logic to implement the algorithm changes were designed and implemented at

Honeywell Technology Center, with some assistance from Bill Capron (a Lockheed contractor at

NASA LaRC).

Section 1.2 below presents a detailed list of the changes that were made to the AILS algorithm.

The latest version of AILS, which contains these changes, was coded in PASCAL and tested in

simulations and flight experiments in 1999. (There is also an equivalent "C" version of the

code that was used by Honeywell Technology Center to perform simulation and analysis work.)

This document provides a Software Design Document-like description of this most current

AILS software.

1.2 Changes to the AILS Algorithm

Following is a list of the major changes made to the AILS algorithm.

Added vertical dimension to alerting. This required the addition of a vertical situation

determination routine. It also mandated changing from the existing point-of-closest-

approach formulations in favor of the solution of a quadratic equation to obtain entry and

exit times into the horizontal alert region.



• Changedfrom circularhorizontalprotectionto elliptical protectionzone.

• Addedthecapabilityfor non-parallelrunways.

• Addedthecapabilityfor vertically offsetrunwaythresholds.

• Added the capability for displaced runway thresholds.

• Added capability to handle real-world-type localizer and glide-path definitions.

• Changed from bank-angle based turn predictions to track-rate based turn predictions.

• Added actual states capability. This represents a departure from the nominal mode that

requires both vertical and lateral "snapping" of the aircraft to the glide-path and localizer

respectively. Much of the complication in this task involved the need to transform the

elliptical alerting coefficients to an alternate coordinate system in order to slave the ellipse to

the aircraft frame of reference during the actual-states mode.

• Added the protected escape zone capability (not engaged during RSIL and flight test

activity).

• Removed bank angle bias.

• Revised the straight track/curved track logic in the main AILS executive Larcalert_full.

• Added logic to handle comer cases/divide by zero cases introduced by the vertical and

elliptical alert region modifications.

• Added the use of a first order filter for improved track rate prediction and turn performance

(and also for improved false alarm performance).

• Added maximum turn-time capability. This is a limit on the "project ahead" time when the

aircraft is in a turning situation that requires AILS to perform "fan" projections. (This

feature was not engaged during RSIL and flight test activity.)

1.3 Document Overview (How to Use This Document)

The following table describes the major subsections of this document.

3.0

4.0

Section name Description

Introduction Introduction and list of major additions to original AILS

AILS Algorithm Provides the reader with an introduction and overview of the AILS

Overview algorithm.

AILS Coordinate

Frame

Descriptions

AILS Top Level

Description With

Describes the coordinate systems used in AILS. Sound knowledge

and understanding of the coordinate systems used is essential for the

implementation of AILS, either in simulation or in real-time

systems.

Describes the main functional blocks of AILS and how those blocks

are organized. The flow charts further enhance understanding of the



5.0

6.0

7.0

A

B

C

Sectionname Description

Flow Charts elements and that comprise the major blocks and routines.

AILS Data

Descriptions And

Pseudo-code

Algorithm Pre
and Post Call

Requirements

Contains the complete descriptive data definitions as well as pseudo-

code for the core AILS algorithm. The information in this section is

comprehensive and sufficient for a software programmer to program

the full functionality of the current core AILS algorithm.

Although detailed pseudo-code is provided for core AILS, some pre

and post-processing is required to set up AILS and also to fully

duplicate the functionality of the current implementation of AILS.

This section provides descriptions on how to set up and call AILS, as

well as recommended preprocessing or post processing. The

information provided is absolutely required for the implementers of

AILS (either for simulation or real system implementation).

AILS Equations Some of the key equations of AILS are derived.

Acronyms and List of acronyms and abbreviations.
Abbreviations

Glossary Descriptions of terminology.

References List of references.

Table 1.3.1 Document Reference Table



2 AILS Algorithm Overview

This section provides an introduction, overview description of the AILS algorithm.

2.1 General Algorithm Description

The purpose of AILS is to provide multiple levels of alerting for pairs of aircraft that are in

parallel approach situations. AILS will assess blame and issue alerts to the "blundering" aircraft

prior to the issuing similar alerts to the "innocent" aircraft. The algorithm takes advantage of

current aircraft states as well as known "intent" information in order to project ahead for threat

determination. This forward projection is executed based on current positions, velocities,

altitudes, turn rates, and climb rates. AILS threat determination consists of 2 types of alerting

checks, with 2 levels for each alert type.

.

.

Adjacent ship threat to own ship (caution- and warning-alerts levels).

The solid lines in Figure 2.1.1 AILS Fan and Intrusion Check Scenarios show this.

Own ship threat to adjacent ship (caution- and warning-alerts levels).

The dashed lines in Figure 2.1.1 AILS Fan and Intrusion Check Scenarios show this.

Cumulatively, there are four levels of alerts that are ascending in degree of criticality. Table

2.1.1 describes these levels and their associated attributes.

alert level alert type associated scenario commanded action

level 1 caution own ship threatens adjacent issue PATH alert to adjacent ship

ship

level 2 caution adjacent ship threatens own issue TRAFFIC alert to own ship

ship

level 3 warning own ship threatens adjacent issue EEM alert to adjacent ship

ship

level 4 warning adjacent ship threatens own issue EEM alert to own ship

ship

Table 2.1.1 AILS Alert Level Attributes

An aircraft that is off of its approach path and threatening another aircraft is designated in AILS

nomenclature as the "intruder." The threatened aircraft is designated as the "evader." In a

typical intrusion scenario where the intruders ignore their alert messages, the alerts will be

issued in the following sequence:

1. Intruding aircraft pilots receive a PATH caution alert.

2. Evader aircraft pilots receive a TRAFFIC caution alert.

3. Intruder aircraft pilots receive a commanded EEM warning.

4. Evader aircraft pilots receive a commanded EEM warning.

4



- AIL FAN AND

:-: ,,

- /

/
ellipse

g ellipse

: I ...,l/i warning ellipse crossran
I ."E!l_!:

warning ellipse downran:

Ownship

(os)

/ iiiiiiil;;  
.$" _ :. -

V ,.-::--ii--:-::,i......-i
i -

.............-._ /
- :

•.. / ...-
\ --,.......... /

"o.. ...o..."

.,..-

/" ...

....-

°.

.-" i
.,-" i

- /

/
°°°."

Adjacent

Ship

(A J)
_,,a.
N

Figure 2.1.1 AILS Fan and Intrusion Check Scenarios



During AILS's threat evaluation, forward projections are performed from the current state out

towards a finite time in the future. The intruder's state is projected forward to see if it will

puncture the evader's protection zone. This zone consists of a linear distance above and below

the aircraft, and an elliptical protection area in the horizontal plane. Table 2.1.2 shows some of

the key AILS alerting parameters.

parameter

downrange (ft)

cross-range (ft)

alert zone above (ft)

level 1

5000

level 2

3500

level 3

3400

level 4

2500

1800 1300 1250 900

1800 1300 1250 900

alert zone below(ft) 1800 1300 1250 900

alert time(sec) 30 22 21 16

Table 2.1.2 Current AILS Alerting Parameters

Note that in order to achieve the desired alerting sequence as previously described and

illustrated in Table 2.1.1, the alert zone sizes and alerting times decrease with the increasing
alert levels.

2.2 Elliptical Protection Zone

The AILS alerting algorithm is 3-dimensional. The protected space around the aircraft is

elliptical in the horizontal plane. The protected aircraft is at the center of the ellipse. Typically,

the major axis of the ellipse is aligned in the direction of the final approach (See section 2.9 for

the exception to this alignment). In the vertical plane, the protected region is a specified linear

distance above and below the aircraft. Projections of the intruder into this protected area will

cause alerts to be issued.

The protection ellipse is specified by downrange and cross-range parameters which represent the

major and minor axes of the ellipse, respectively. Setting the downrange equal to the cross-

range would result in a cylindrical protection zone. This cylindrical "hockey puck" was the

shape of the protection zone in an initial AILS design. Analysis has shown that employing an

ellipse with the major axis in the direction of travel increases performance of the overall system.

2.3 AILS Fan

AILS requires that if the intruder is executing a turn, the algorithm will project this turn through

the required time. In addition to this, AILS will also assume that at designated points during the

turn, the intruder may level out and fly in a straight line. These straight paths are also projected

through the required time period. These straight segments are known as "tangent tracks." These

projections result in a "fan" of trajectories that are evaluated for collision threat potential. The

AILS "fan" represents an added level of safety check and conservatism (see Figure 2.1.1 on page

5).

2.4 AILS Forward Projection Assumptions

As AILS performs threat determinations, both aircraft states are projected forward in time.

Several assumptions are made as these extrapolations are carried out:



Both aircraftareassumedto fly with aconstantgroundspeed.

Unlessactualstatesmodeis in effect,theevaderis assumedto beinitialized on thelocalizer
beamandto stayon thelocalizerbeamfor thedurationof thecurrentpredictiontimes.

Theintruderis assumedto be flying a constantradiusturn atthecurrentturn rateandcan
levelout atany timeandfly straightalonga tracktangentto theturn arc. Thecurrent
configurationis setcomputeturn ratebasedon trackratethat hasbeenderivedfrom GPS
velocities,but it canalsobeconfiguredto usebankangle.

TheAILS forward searchtime step:(deltatAILS) is an input andis currentlysetto thevalue
of 0.5 seconds.This time stepwill determinethesearchresolutionwhenAILS is performing
theintruderandevaderprojectionsin it's processof threatdetermination.

ThetangenttracksarecomputedeveryN time steps,whereN is chosendynamicallysuch
thatthetangenttracksaretakenbetweenevery1.5to 3.0degrees.(Thecomputationof the
tangenttrackfrequencyassumesthat thetime stepis 0.5 seconds,or a fractionof that. It
shouldstill work if thetime stepis different,but it maynot producetracksbetween1.5and
3.0degrees

2.5 Snapping vs. Actual States

The AILS algorithm works on designated pairs of aircraft. For a particular set of aircraft, in

each respective aircraft's computer, two scenarios are considered:

.

.

Where the own ship is considered as the intruder and the adjacent ship is considered as the

evader;

Where the own ship is considered as the evader and the adjacent ship is considered as the
intruder.

In each scenario, the intruder's current state information is used to project the intruder's

anticipated position as a function of time. The evader's actual current states are used with the

exception of cross-range and altitude. Instead, in accordance with the "intended states"

philosophy, the evader's assumed position for cross-range and altitude are "snapped" to the

localizer and glide slope, respectively. This protects the region on the intended path where the

aircraft is most likely to be in the future.

If the aircraft is NOT established on its approach, its actual states will be used regardless of

whether the scenario requires it to be intruder or evader. The reason for the "snapping" is the

design philosophy which makes use of the known intended approach path of an aircraft.

2.6 On Approach/Off Approach Criteria For Snap Determination

If an aircraft is substantially off of it's approach, it is not appropriate to "snap" that aircraft to

the approach path. "Snapping" under this condition would significantly misrepresent the

position of the aircraft, which could lead to either false alarms or missed alerts. Following is the

criteria used to determine if an aircraft is significantly off of its approach:

Aircraft declared NOT to be on approach if:



1. More than2 dotsof vertical deviation.

2. More than2 dotsof lateraldeviationOR morethan400ft of lateraldeviationto either
sideof theapproachpath.

At very largedistancesfrom aircraft to therunwaydatumpoint, 2 dot angularoffsetscanresult
in largedeviationsfrom thecenterapproachon theorderof thousandsof feet. Thereforethe
400foot lateralcriteriawasaddedto theangulardotsasalimiting factor onhow far AILS will
snapanaircraft. Thedefinition usedfor 2 dotswasthefollowing:

2 dots of horizontal deviation = 2 degrees to either side of localizer path

2 dots of vertical deviation = .7 degrees above and below the glide path

These values were hard-coded in the software. If the localizer or glide path sizes change, these

values would need to be made input parameters.

The reference point for defining these angles is the Glide Path Intercept Point (GPIP).

2.7 On Approach/Off Approach Intruder and Evader Track

During AILS's threat determination scenarios, if the aircraft that is designated as the evader is

determined to be on-approach, the track angle for that aircraft is considered to be congruent with

the approach. This is in conformance with the AILS "snapping" philosophy. If the aircraft is

determined to be off-approach, then the track angle used for the evader will be the actual track

angle of the aircraft (which is specified in the runway coordinate frame). If this aircraft is in a

turn, the current track of the aircraft will be used and the aircraft will be presumed to fly straight

along that track.

In AILS threat determinations, the intruder's actual states are always used regardless of whether

the intruder is on-approach or off-approach.

2.8 Ellipse Size Adjustments If Aircraft is Off Approach

If an aircraft is determined to be off-approach according to the criteria listed above, it is NOT

snapped to the approach when it is playing the evader role during AILS threat determinations.

The original AILS algorithm always snapped one aircraft to the approach path, so if that aircraft
was then threatened it was obvious which aircraft was at fault and which aircraft should be

alerted first. With the snapping taken away, and no other changes made, both aircraft may get

an alert at a similar time. Since we have taken away a basic assumption of AILS, we need a new

method of assessing blame and alerting the blundering aircraft first.

To address blame when one aircraft is off-approach, we will use the fact that they are off-

approach to determine who is at fault. When one or both aircraft are off their approach the

alerting parameters are modified to get the alerts to occur in the proper order. Also, the way

alerts are treated is modified to properly assess blame. Table 2.8.1 below shows how the alert

parameters and alert logic are modified depending upon who is off-approach.

A few general statements can be made to summarize the table below. If my aircraft is off

approach, and the adjacent aircraft is on-approach, then my aircraft is blamed for all alerts. So,

my aircraft's computer will use level 1 & 3 alert parameters for all 4 scenarios listed in Table



2.1.1above,andtheadjacentaircraft's computerwill uselevel2 & 4 alertparametersfor all 4
scenarios.Theblunderingaircraftwill thusalwaysgetthealertsfirst. To ensurethatblameis
properassessed,theblunderingaircraftwill only get level1 & 3 alerts,andtheinnocentaircraft
will onlyget level2 & 4 alerts.

Own ship is on

approach

Own ship is off

approach

Adjacent ship is on approach Adjacent ship is off approach

Nominal ellipse parameters for

own ship and adjacent ship.

Set level 2 & 4 alert parameters

equal to level 1 & 3 alert

parameters. If level 2 or 4 alert

occurs, mark it as a level 1 or 3

alert.

Set level 1 & 3 alert parameters equal to

level 2 & 4 alert parameters. If level 1

or 3 alert occurs, mark it as a level 2 or

4 alert.

Set level 2 & 4 alert parameters equal to

level 1 & 3 alert parameters.

Table 2.8.1 On Approach/Off Approach Ellipse and Alert Determinations

If both aircraft are off-path, then we no longer assess which aircraft is to blame for the collision

threat. It will be likely that one aircraft is just slightly off path and the other is blundering, but

they are treated equally. Both aircraft will use the level 1 & 3 alert parameters to get the alerts
to occur sooner.

2.9 Protection Ellipse Frame of Reference

A protection ellipse is always centered at the protected aircraft. The orientation of the ellipse

will depend on whether or not the aircraft is on or off of its approach. If an aircraft is on the

approach path, the protection ellipse's orientation is slaved to that aircraft's local runway

coordinate system: The major axis of the ellipse is aligned with the approach path. If an

aircraft is off of the approach path, than the protection ellipses are slaved to aircraft direction of

travel: The major axis of the ellipse points in the direction of that aircraft's track angle (Figure

2.9.1).



If off approach, die protection ellipses are slaved
to the ah'crafl body axis and heading.

Ship Ru_ lwayi

Adjacent Ship Runway

X

I

I

I

I

While on approach, the protection ellipses are slaved to

the runway approach coordinate system.

Figure 2.9.1 Ellipse Slaving To Aircraft Frame vs Approach Frame

2.10 Protected Escape Zone (Currently Disabled)

The AILS algorithm has an incorporated "protected escape zone" capability that does not use

any prediction of future aircraft positions. This zone is chosen as a rectangular shape around the

protected aircraft. If the other aircraft is inside of this protected area, an EEM command is

issued to the protected aircraft.

The protected escape zone is defined by setting the appropriate parameters that are defined in

Table 2.10.1. Lateral protection to the EEM side of the evader is extended to infinity. This

protected escape zone is clearly seen in the diagram in Figure 2.10.1. Section 6.12.4 (on

Default Protected Escape Zone Parameters) shows how to set these parameters in order to

disable the protected escape zone functionality.

The original purpose of this feature was to reduce the induced-collision rate by protecting the

evader escape route. However, as we tested this feature, we discovered that it not only

drastically increased the frequency of false alerts, but also increased the frequency of induced

collisions. In analyzing the nature of the induced collision scenarios, we came up with the idea

10



of theelliptical protectionzone. Theelliptical protectionzonegaveustheperformancewe
werelooking for, makingtherectangularprotectedescapezoneunnecessary.Therefore,the
currentlyimplementedAILS configurationhasthis featuredisabledby selectingparameters
appropriately.

Parameter Definition

protectedlateral
(distance
towards
adjacent
approach)

Lateralcross-rangedistancein directionof the intruder'srunway. This is
specifiedasapositivenumberasshownin Figure 2.10.1. Settingthis to a
largenegativenumberpushesthezonefar to the"escape"sidethus
effectively turningoff thezone. TheEEM sideof theprotectedescapezone
automaticallyextendsto infinity.

distanceahead Downrange distance ahead of the aircraft.

distance below Downrange distance behind the aircraft.

distance above Vertical distance above the aircraft.

distance behind Vertical distance below the aircraft.

Table 2.10.1 Protected Escape Zone Parameter Definition

11



Own Ship Runway

y dl? ofi]_ei'

offset

x

Ownship datum point

_iiiiiiiiiiiiii and origin

Adjacent Ship Rv, nway

iiiiiii_Nt_.,t_

iiiiiii_A_N._iiiiiiiiii

}_t_iiiiiiiiiiiiiiiiiiiiiii

Figure 2.10.1 Protected Escape Zones

2.11 AILS Turn Time (Currently Disabled)

The AILS turn time parameter limits the length of time that AILS will project a current turn

when the algorithm is performing the fan. This value is not to be confused with the normal

AILS alerting time parameters which determine how far ahead AILS projects ahead. The

distinguishing factor is if the aircraft is currently in a turn, the current track and the tangent

tracks projections will be governed by the AILS alerting parameter, but the time that the turn is

maintained will be limited by the turn time.

Example of AILS Turn Time: If the AILS turn time is set to 1 second, the current turn will be

carried out for only a second. After that time, in conformance with the "fan" logic, the aircraft

will be assumed to level out and fly in a straight path. The remaining time of the projection of

this straight path will be governed by the appropriate caution and warning AILS alerting times.

This turn limiting was originally introduced in an effort to decrease false alarms due to

turbulence and pilot over adjustments. The current default configuration is to set the turn time

to a value that would render the turn time being disabled. This is done by selecting a large

number that is greater than the largest AILS alerting time:

AILS turn time = 99 sec (disabled)

12



2.12 Track Rate Deadband

A dead band is applied to aircraft track rates that are close to zero. The purpose for this is to

prevent unnecessary turns and fans resulting from minor track rate perturbations and

turbulence. If an aircraft's track rate is at or below this value, a zero value is selected as the

aircraft track rate. The following value of the track rate dead band reflects the value used in the

most current configuration.

AILS track rate deadband = .00024 rad/sec

13



3 AILS Coordinate Frame Definitions

3.1 Transformation From Earth To Local Coordinates

AILS uses two coordinate systems - one aligned with the own ship's intended approach, and one

aligned with the adjacent ship's intended approach. The coordinate system origins are located at

the approach datum points (typically the runway thresholds), and the x-axes are aligned with the

approach centerlines (typically the runway centerlines). Standard navigation data for each AILS

aircraft is converted to these local coordinate systems (Figure 3.1.1).

Coordinate transformation is from geodetic lat, Ion, and msl alt to local runway which is

specified in terms of the datum point.

"T-_-[latitude, longitude, msl altitude]
[osx, osy, osh]

(z axis is not referenced)

own ship danm_ point

ould be nmway thi'eshold)

rotation

Figure 3.1.1 Transformation From Spherical Earth To Local Runway Coordinates

Note that the "z" axis points down but the altitude or "h" axis points up and is positive up. This

is the main axis of vertical reference in the AILS algorithms.

3.2 Definition Of Internal AILS Coordinate System

Figure 3.2.1 defines AILS runway coordinate system as viewed from above looking down, and

Table 3.2.1 describes the variables used in the Figure. Each aircraft in the AILS pair considers

itself to be the own ship. The origin of the own ship coordinate system is at the center of that

aircraft's datum point. The x-axis points straight down the runway length and is positive in the

landing direction. The y-axis points 90 degrees to the right (from the x positive direction). The

x-axis direction is commonly known as downrange while the y-axis direction is commonly

known as the cross-range.

The true z axis is not referenced. Instead, altitude above the runway threshold plane (h) is used.

The adjacent ship refers to the aircraft performing the parallel approach with the own ship.

The origin of the adjacent ship coordinate system is at the adjacent ship's datum point. The x-

axis points straight down the approach centerline and is positive in the landing direction. The y-

axis points 90 degrees to the right (from the x positive direction). The x-axis direction is

14



commonlyknownasdownrangewhile they-axisdirectionis commonlyknownasthe cross-

range.

As AILS performs it's intrusion checks it will designate one aircraft as an intruder and the other

aircraft as the evader. During these checks, both aircraft have to placed in a single frame of

reference. AILS chooses the intruder frame of reference to contain the intruder and evader

positions.

Top view looking down

ajpsi_offset

(positive shown)

Own Ship Runway

ajpsi___offset_egafive shown)

Adjacen"; Ship Rup_.way

offset'

osxpos

x

aj y_dp_offset

adjacent ship

datum point

own ship

datum point

ajx_dp_oft_et

)os

offset'

jypos

Figure 3.2.1 AILS Runway Coordinate System

variable description

osxpos downrange position of own ship relative to own ship coordinate system

osypos cross-range position of own ship relative to own ship coordinate system

oshpos h position of own ship relative to own ship coordinate system

ajxpos downrange position of adjacent ship relative to adjacent ship coordinate

system

15



variable description

ajypos cross-range position of adjacent ship relative to adjacent ship

coordinate system

ajhpos h position of own ship relative to own ship coordinate system

ajx_dp_offset downrange offset of adjacent ship datum point from own ship datum

point in own ship coordinates

ajy_dp_offset cross-range offset of adjacent ship datum point from own ship datum

point in own ship coordinates

ajh_dp_offset

ajpsi_offset

ajx_dp_offset'

altitude offset of adjacent ship datum point from own ship datum point

in own ship coordinates

ajpsi_offset'

x0

angle offset of adjacent ship runway from own ship runway in own ship

coordinate system

downrange offset of own ship runway from adjacent ship runway in

adjacent ship coordinate system

ajy_dp_offset' cross-range offset of own ship runway from adjacent ship runway in

adjacent ship coordinate system

ajh_dp_offset' altitude offset of own ship runway from adjacent ship runway in

adjacent ship coordinate system

angle offset of own ship runway from adjacent ship runway in adjacent

ship coordinate system

yO

hO

xloc

yloc

hloc

x position of the intruder aircraft relative to the intruder flame

coordinate system

y position of the intruder aircraft relative to the intruder flame

coordinate system
h altitude of the intruder aircraft relative to the intruder flame

coordinate system

x position of the evader aircraft relative to the intruder flame coordinate

system

y position of the evader aircraft relative to the intruder flame coordinate

system
h altitude of the evader aircraft relative to the intruder flame coordinate

system

Table 3.2.1 Definition Of AILS Runway Frame Position Variables

3.3 Side and Downrange Views of AILS Internal Coordinate System

Figure 3.3.1 shows the side view of the AILS coordinate system. The "y" axis is pointing out of

the page towards the reader in this diagram. The diagram also shows the relationship between

the external MSL altitude and the internal AILS variable oshpos which is specified relative to

the runway datum point.

16



Exaggerated view of Earth curvature, h is positive up

oshpo:

L Altitude

own

,h

x
>

s !ip datum point

Figure 3.3.1 Side View Of Ails Coordinate System

Figure 3.3.2 shows a "downrange" view of the AILS coordinate system. This is the runway

scenario as viewed in the landing direction. The "x" axis in this diagram is positive into the

page. The variable ajh_dp_offset is positive as shown.

Downrange View: x is positive into the page

h is positive up

adjacent ship--_-

own ship_

oshpos h

ajhpos

A

ajh_dp_offsel
Y
>

Xown ship datum point

h

_ y

djacent ship datum point

Figure 3.3.2 Downrange View Of Local AILS Coordinates

17



3.4 Transformation Equations Between Parallel Runway Coordinates

Recall that as AILS performs a threat evaluation of one ship against another, it will choose the

intruder's frame of reference as a common frame to work in. Following are the equations that

perform the necessary transformations to establish a single coordinate system that corresponds to

a particular scenario. Refer back to Figure 3.2.1 on page 15 for the corresponding geometry.

The nomenclature convention is that the evader variable is given a "loc" tag (xloc, yloc), while

the intruder variable receives a "0" tag (x0,y0).

State Transformations With NO Snapping to Glideslope and Localizer
Scenario 1: The adjacent ship is assumed to be the intruder

x0 = ajxpos

y0 = ajypos
h0 = ajhpos

xloc = (osxpos - ajx_dp_offset) * cos(ajpsi_offset) + (osypos-ajy_dp_offset) * sin(ajpsi_offset)
yloc = (osxpos - ajx_dp_offset) * -sin(ajpsi_offset) + (osypos-ajy_dp_offset) * cos(ajpsi_offset)

hloc = oshpos - ajh_dp_offset

Scenario 2: The own ship is assumed to be the intruder

x0 = osxpos
y0 = osypos

h0 = ajhpos
ajpsiloc' = -ajpsiloc

ajxloc' = ajxloc * cos(ajpsiloc) + ajyloc * sin(ajpsiloc)

ajyloc' = -ajxloc * sin(ajpsloc) + ajyloc * cos(ajpsiloc)
xloc = (ajxpos + ajx_dp_offset') * cos(ajpsi_offset') + (ajypos + ajy_dp_offset)'*sin(ajpsi_offset')

yloc = (ajxpos + ajx_dp_offset') * -sin(ajpsi_offset') + (ajypos + ajy_dp_offset)'*cos(ajpsi_offset')
hloc = ajhpos + ajh_dp_offset

Table 3.4.1 State Variable Transformations With NO Snap

State Transformations With Snapping to Glideslope and Localizer

Scenario 1: The adjacent ship is assumed to be the intruder

x0 = ajxpos
yO = ajypos

h0 = ajhpos
xloc = (osxpos - ajx_dp_offset) * cos(ajpsi_offset) + (-ajy_dp_offset) * sin(ajpsi_offset)

yloc = (osxpos - ajx_dp_offset) * -sin(ajpsi_offset) + (-ajy_dp_offset) * cos(ajpsi_offset)

hloc = -ajh_dp_offset + ostch - osxpos*tan(osglide)

Scenario 2: The own ship is assumed to be the intruder

x0 = osxpos
y0 = osypos

hO = oshpos
ajpsiloc' = -ajpsiloc

ajxloc' = ajxloc * cos(ajpsi_offset) + ajyloc * sin(ajpsi_offset)

ajyloc' = -ajxloc * sin(ajpsi_offset) + ajyloc * cos(ajpsi_offset)

xloc = (ajxpos + ajx_dp_offset') * cos(ajpsi_offset') + (ajy_dp_offset)'*sin(ajpsi_offset')
yloc = (ajxpos + ajx_dp_offset') * -sin(ajpsi_offset') + (ajy_dp_offset)'*cos(ajpsi_offset')

hloc = ajh_dp_offset + ajtch - ajxpos * tan (ajglide)

Table 3.4.2 State Variable Transformations With Snap

18



Thevariablesintroducedabove(ajglide,ajtch,osglide,andostch)aretheglideslopeanglesand
thresholdcrossingheightsthatdefinetheglidepathsthat theaircraftaresnappedto. These
variablesaredescribedfurther in thefollowing sectionwheretherelevanceof approachdatato
theAILS algorithmis discussed.

3.5 Use of Approach Data to Perform Conversion to AILS Coordinates

AILS is confined to a parallel runway approach scenario. Approach data is therefore a vital and

integral part of the AILS algorithm. This is especially true since AILS performs "snapping" to

glide-slopes and localizers which requires precise knowledge of where the runways and

approaches are.

Depending on the specific implementation of AILS, the coordinate transformation from

latitude, longitude, and altitude to the local runway coordinate frame requires knowledge of the

local runway and approach. The software that performed these conversions for the flight tests

used the convention that was defined according to conventions adopted by Honeywell's

SLS/GNSSU systems.

Figure 3.5.1 shows the convention adopted by Honeywell's GNSSUs to define a particular

approach. The variables used in this convention are equivalent to the key variables used by

AILS as it refers to the approach geometry.

The Alerting Path Length (APL), also known as the AILS Path Length, is defined as a linear

distance from the runway datum point. When the aircraft is within this distance from the datum

point, the AILS algorithm may be turned on. The significance of the APL is that outside of the

APL, aircraft are required to maintain 1000 ft vertical separation, whereas once the APL is

entered, aircraft may begin to lose the vertical separation. The APL is a system design

parameter which typically ranges from 10 to 24 nautical miles, however the selected precision

approach system should be a strong determining factor. The APL is discussed further in

sections 6 and 6.9 where other criteria for enabling AILS protection is discussed.

19



DP Datum Point

GPIP Glidepath Intercept Point

SEP Stop End Point

TCP Tbxeshold Crossing Point

TCH Ttueshold Crossing Height

7 Glideslope Angle

Glidepath Heading

APL Alerting Path Length

A Runway Slew Angle

Glidepath

Side View

TCP

Top View SEP _ It /

_Runway

GPI_V

DP, TCP_._

/ _ _ Runway Threshold

I/

N°rthI V //APL

Glidepath_ APL

/- 2,7,o 

TCH

APL --

DP
Start of

Alerting Runway Threshold

GPIP SEP

Figure 3.5.1 Key Approach Parameters

Table 3.5.1 below correlates some of the data used to define approaches by the Honeywell SLS

format to the internal variables used by AILS.

AILS Variable

osglide

ajglide

ostch

ajtch

Description

own ship glide path angle

adjacent ship glide path

angle

altitude at which the glide

path crosses over the

datum point for the own

ship

altitude at which the glide

path crosses over the

Relationship to external approach info

osglide = gamma (glide path angle) for own

ship. Positive as shown in Figure 3.5.1. 3

degrees is standard.

ajglide = gamma (glide path angle) for adjacent

ship. Positive as shown in Figure 3.5.1. 3

degrees is standard.

ostch = TCH (Threshold crossing height) for

the own ship approach

ajtch = TCH (Threshold crossing height) for

the adjacent ship approach

20



AILS Variable Description Relationship to external approach info

datum point for the

adjacent ship.

ajx_dp_offset

ajy_dp_offset

ajh_dp_offset

ajx_dp_offset'

ajy_dp_offset'

ajh_dp_offset'

ajpsi_offset

ajpsi_offset'

x offset of adjacent ship

datum point from own ship

datum point in own ship

coordinates.

y offset of adjacent ship

datum point from own ship

datum point in own ship
coordinates.

altitude offset of adjacent

ship datum point from own

ship datum point in own

ship coordinates.

x offset of adjacent ship

datum point from own ship

datum point in adjacent

ship coordinates.

y offset of adjacent ship

datum point from own ship

datum point in adjacent

ship coordinates.

altitude offset of adjacent

ship datum point from own

ship datum point in own

ship coordinates.

angle offset of adjacent

ship approach heading

relative to own ship

approach heading.

relative position of adjacent ship datum point

(DP) to own ship datum point (DP).

relative position of adjacent ship datum point

(DP) to own ship datum point (DP).

relative position of adjacent ship datum point

(DP) to own ship datum point (DP).

relative position of adjacent ship datum point

to own ship datum point (DP).

relative position of adjacent ship datum point

to own ship datum point (DP).

relative position of adjacent ship datum point

(DP) to own ship datum point (DP).

determined by the own ship and adjacent ship

approach paths. These approach paths are

determined by the respective datum points

(DP)and their corresponding stop end points

(SEe)

Table 3.5.1 Definition Of Key AILS Approach Related Parameters

For these approach parameters, the adjacent ship specific variables marked as "prime" variables

(ajx_dp_offset', ajsi_offset' etc), are computed internally by AILS. Detailed knowledge of

these prime variables is NOT required. The implementers are required to know how to

compute and specify the normal own ship non-"prime" parameters which need to be supplied to

the AILS algorithm. Section 5.1.1 further describes input parameter requirements.

21



4 AILS Top Level Description with Flow Charts

This section first gives a brief top level description of how AILS performs its alert and threat

determinations. Then, flowcharts schematically depict the main functional blocks that carry out

the AILS algorithm.

4.1 AILS Top Level Description

AILS checks two main scenarios: 1) The adjacent ship as intruder and the own ship as evader;

and 2) The own ship as intruder and the adjacent ship as the evader. Also, depending on certain

flags passed to the algorithm which determine the aircraft's on-approach/off-approach status, the

evader or intruder may be snapped as necessary. In each scenario, the intruders states are

projected forward a designated period of time. The intruder's vertical profile is checked against

the evader's vertical profile to determine the times that the intruder is inside of the evader's

vertical protected region.

The intruder's horizontal states are also projected forward. If the intruder is turning, at each

specified interval of the turn, AILS assumes that the intruder levels out of the turn and continues

straight in the current direction (AILS fan). The solution of a quadratic equation determines the

times at which the intruder enters and exits the evaders protected elliptical zone. These

horizontal entry and exit times are compared against the vertical entry and exit times to check if

the intruder is ever inside the evader's protected zone within the period of evaluation.

These checks are performed for both the caution and the warning alert levels. The appropriate

alerts are issued by flipping appropriate bits in a status vector.

4.2 AILS Algorithm Structure and Flow Charts

This section portrays the basic functional blocks of the current AILS algorithm. Flowcharts are

presented, but they do not provide a complete description of the AILS algorithm. Instead their

intent is to aid the reader in understanding of the algorithm structure. For a complete and

comprehensive algorithm description, refer to the pseudo-code section of this document.

Table 4.2.1 below outlines the major functional blocks of AILS. The flowcharts are presented in

a top down fashion starting with Larcalertfull at the top.

Larcalert Full (Figure 4.2.1) is the top level routine which executes the AILS algorithm. One

major functional block of Larcalert Full is the ilook scenario setup block (Figure 4.2.2). This is

responsible for staging the roles of the own ship and the adjacent ship as intruders and evaders.

For each role, appropriate variables related to aircraft states and alerting are defined. The

ilooks/scenarios block also calls the Chkvertfull routine (Figure 4.2.3) which performs the

vertical scenario check of the intruder against the evader's protected zone.

Once the scenario/ilook blocks are complete, the Larcalert Full executive will sequentially

perform the forward projections and fan of one aircraft against the other. The function

Chktrack_full (Figure 4.2.4) will be invoked to check for potential intrusions for each tangent

track of the fan, while the function Chkrange_full (Figure 4.2.6) will check for any instant

intruder-in-evader-ellipse scenarios. Chktrack Full answers the question: "Will the intruder be

22



in theevader'selliptical zoneat anytimeof this currenttangenttrack?",whereasthe
Chkrange_fullanswersthequestion"Is theintruder in theevader'selliptical zoneright now?"

If ChkrangeFull or Chktrack_Fulldetectanyintrusions,theywill raisethe appropriatealerting
flagsthat arereturnedto theoutsideworld throughLarcalert_Full.

AILS Routine or

Functional Block

Larc_alert_full

ilooks block/

scenario setup

Chkvert_full

Chktrack_full

Chkrange_full

Function

Main AILS executive routine. Sets up variables and

alerting parameters. Sequences through intrusion

scenarios; Calls vertical determination routines;

Performs AILS forward projections and fans; calls

Chktrack_full and Chkrange_full routines which

evaluate threats.

This is a major sub-block of larc_alert full. This block

sets the stage for the alert checks. It sets states

information, alerting parameters, as well as calls

Chkvertfull to assess the vertical scenarios.

Assesses vertical situation. Checks to see when

intruder aircraft is in the evader's vertical alert

threshold.

Performs tangent track check for current time to end of

current tangent track to see if the intruder will be in the

evader's protected ellipse at any time.

Performs instantaneous check to see if the intruder is in

the evader's horizontal ellipse thresholds.

Flowchart

Figure 4.2.1

Figure 4.2.2

Figure 4.2.3

Figure 4.2.4

Figure 4.2.5

Figure 4.2.6

Table 4.2.1 AILS Major Functional Blocks and Routines

23



4.2.1 Larcalert full Flowchart
i

C Begin LarcalertIfull )

+
I Initialize all alerting states to FALSE. Define sines & cosines of runway offset angles I

Loop over two scenarios (ilook) ]41

For each scenario perform setup:

•Set appropriate ac states information.

•Set alerting parameters

•Determine vertical situation (get entry and exit times)

See expanded flowchart for this box in Figure 4.2.2

I .Apply track rate dead band.•Compute turn radius

•,_et intruder track angle and turn rate to proper eoordinate._

I Determine frequency of tangent tracks

I Predict position of evader A/C

[Loopovert e
I I

I Predict intruder position on turn arc I

Call CHKRANGE _N° es Call CHKTRACK

(Figure 4.2.6) I" " " (Figure 4.2.4)

No

f
k_End of Larcalert_Full_

Figure 4.2.1 Larcalert_full Flow Chart

24



4.2.2 Scenario Setup (ilook blocks) Flowchart

gin sub diagram fi'om Larcalert Full flowhart.'_

Box corresponding to scenalio setup. J

ilook = 1 _ ilook = 2

I et own ship's actual states asthe intruder states

I_vad_r_ro.mds.d_oad_ac_n_s_pI

Define coordinate transformations for

reference origin at own ship thieshold.

(ajx dp offset plime...)

I Iusin_ adiacent shhi as evader

Set evader x,y,alt, alt rate, Snap evader states

and track to adjacent ship's to glide slope and

corresponding unsnapped localizer of the

states adiaeont _hi

Set adjacent ship's actual states as the /
/

Jintruder states

,L
I Set evader gro_mdspeed to own ship

Define coordinate transformations for

reference origin at adjacent ship thieshold.

(ajx dp offset....)

I °mp   'msnap- vad rp°si °nsIusine own shio as evader

Set evader x,y,alt, alt rate, Snap evader states

and track to own ship's to glide slope and

corresponding unsnapped localizer of the

states own _hin

Compute sines and cosines of working selected evader track

Select appropriate almting ranges and times

Perform escape zone/protected zone check.

(defeatable by selecting appropriate parameters)

Evaluate vertical scenatio. Obtain ently and I
exit times fol vmtical almt zone intrusion ( Figure 4.2.3 ) ] exit Evaluate vertical scenatio. Obtain ently andtimes for vertical alto* zone intrusion (Figure 4.2.3 )

I

Compute sines and cosines of working selected evader track

I

Select appropriate alerting ranges and times I
1

i

Perform escape zone/protected zone check. I
(defeatable by selecting appropriate parameters) I

I

CEnd of scenario setup subdiagram "_

Figure 4.2.2 Scenario Setup (ilook blocks) Flowchart

25



4.2.3Chkvert full Flowchart

Subroutine Ctkkvert full_

set t enter vert to infinity

set t exit vert to negative infinity

I

compute ceiling and floor ttn'esholds above I
and below the evader I

compute vertical separation rate between

intruder and evader

above _ below

no no

I yc_ _er _yes

Irecomp_*e*en*ervet*I Ise**en*ervet*01 Irecomp_*e*en*ervet*I

exit L"climbing escending _ exit vert

recompute vert I"q "_e12eT_2g12 r.9_ recompute I

neittler

I settexitvert"_fH_i_I

End of subroutine ctkkvert full )

Figure 4.2.3 Chkvert_full Flowchart

26



4.2.4 Chktrack full Flowchart

Begin Ctkktrack full

I Compute relative range and range rate

Compute elliptical alerting distance

squared temls

yes

I
Detemline alert zone breach I

Ifor caution parameters:

See subdiagram in Figure 4.2.5
<

no

yes

l
IDeclare appropnatealert I

1
Remm --)

Detemline alert zone breach

for warning parameters:

See subdiagram in Figure 4.2.5

End Chktrack full )

Figure 4.2.4 Chktrack_full Flowchart

27



4.2.5 Chktrack_full Subdiagram Flowchart

no

I Declare alert

bdiagram of Ctkkn'ackfull: Detemfination of alert zone breach_

for both caution and warning alert levels J

÷
Compute time at which we will no

longer check for ttn'eshold breach

t end check

÷
Compute c and d quach'atic

equation temls d b**2 4*a*c

Compute a and b quadratic equation
telTI1S

I Compute halfway time point betweenellipse entry and exit (tau)

yes

no

1
Compute time band I

i

Compute t enter horizontal ICompute t exit horizontal

End of subdiagram of ctkkn'ack full_

Figure 4.2.5 Subdiagram Chktrack_full flow chart

28



4.2.6 Chkrange_full Flowchart

Subdiagram of Chkrange_full_

Compute squared terms and cross terms for
determination of intruder inside

ellipse

+
compute ellipse_check_cant

(sum squared terms and cross

terms for caution ellipse)

+
compute ellipse_check_warn

(sum squared terms and cross

terms for warning ellipse)

Check for caution alert:

ellipse_check_cant <= e4c and

t enter vert_caut <= tpred and

t exit vert_cant >= tpred
?

rno

Check for warning alert:
ellipse_check_warning <= e4w and

t_enter_vert_wam <= tpred and

t_exit_vert_warn >= tpred
?

yes

yes

declare alert

End of subdiagram of chrange_full_

Figure 4.2.6 Chkrange_full flow chart

29



5 AILS Data and Pseudo Code Descriptions

This section describes the AILS algorithm in detail using a pseudo-code syntax that looks

similar to "C". The pseudo-code is described in sections that correspond to modules of

software. Each section describes the variables that are input, output, and internal to that

section, as well as the pseudo-code that implements that module. Section 5.1 also describes
some data that is common to all of the modules.

Some of the conventions used in the pseudo-code are as follows:

= variable assignment

equality test

&& logical AND

II logical OR

/* text */ comments

*variable use pointer to variable

&variable get pointer to variable

It is recommended that variables defined in the Input/Output Parameters DescriptionTables be

coded up as arguments and NOT global variables. The only global variables coded should be
constants or literals defined in Table 5.1.2.

5.1 Larcalert_full and Top Level AILS Descriptions

5.1.1 Larcalert_full/AILS Input/Output Parameters Description

Following is the data dictionary for variables being passed in and out of the larc_alert_full

algorithm. All variables are input variables with the exception of the status array variable

which is an input/output variable.

Variable Type Units Description Coordinate

System

osxpos double feet Own ship downrange position relative to own os runway

ship datum point.

osypos double feet Own ship cross-range position relative to own os runway

ship datum point.

osgs double ft/sec Own ship ground speed, absolute

ostrk double rad Own ship track angle relative to own ship os runway

localizer/approach path centerline.

ostrkdot double rad/se Own ship track angle rate relative to own ship os runway

c localizer/approach path centerline.

osh double ft Own ship altitude above own ship runway os runway

datum point (in runway coordinates).

30



Variable

oshdot

osglide

ostch

ajxpos

ajypos

ajgs

ajtrk

ajtrkdot

ajh

ajhdot

ajglide

ajtch

_x_dp_off

set

ajy_dp_
offset

ajh_dp_
offset

Type

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

Units

ft/sec

rad

ft

feet

feet

ft/sec

rad

rad/se

c

ft

ft/sec

rad

ft

ft

ft

ft

Description

Own ship altitude rate in runway coordinates

relative to the own ship datum point.

Own ship glide path angle. Defined by

approach information (typically corresponds to

approximately + 3 degrees for standard

approach)

Own ship threshold crossing height.

Adjacent ship downrange position relative to

adjacent ship runway threshold

Adjacent ship cross-range position relative to

adjacent ship runway threshold

Adjacent ship ground speed.

Adjacent ship track angle relative to the

adjacent ship localizer/approach path centerline.

Adjacent ship track angle rate relative to the

adjacent ship localizer/approach path centerline.

Adjacent ship altitude above adjacent ship

runway datum point (in runway coordinates).

Adjacent ship altitude rate in runway

coordinates relative to the adjacent ship datum

point.

Adjacent ship glide path angle. Defined by

approach information (typically corresponds to

approximately + 3 degrees for standard

approach)

Adjacent ship threshold crossing height.

x offset of aj runway datum point from os

runway datum point (in os coordinate system)

y offset of aj runway datum point from os

runway datum point (in os coordinate system)

z offset of aj runway datum point from os

runway datum point (in os coordinate system)

Coordinate

System

os runway

see Table

3.5.1

see Table

3.5.1

aj runway

aj runway

absolute

aj runway

aj runway

aj runway

aj runway

see Table

3.5.1

see Table

3.5.1

see Table

3.2.1

see Table

3.2.1

see Table

3.2.1

31



Variable Type Units Description Coordinate

System

ajpsi_ double rad Angle offset of adjacent runway approach path see Table

offset from the own runway approach path 3.2.1

aldst_e[10] double ft Elliptical alert range threshold vector

alvup[5] double ft Vertical alert range threshold above evader

vector.

alvdown[5] double ft Vertical alert range threshold below evader
vector

altime[5] double ft Alert time threshold vector

protected_ double ft Protected escape zone vector parameters

esc[5]

trkratedb double rad/se Track rate deadband

c

turntime double sec Time duration with which to allow AILS to

project the current forward turn.

tstep double sec Time step search granularity for AILS fan.

status[100] int Vector containing alerting routine status as well
as other miscellaneous information.

intos_snap_

flag

aj_snap_

flag

int

Flag indicating that AILS should perform snap

of the own ship to the own ship's approach

path. If TRUE, snap; If FALSE, use actual

states of the own ship when checking for the

adjacent ship intrusion on the own ship.

Flag indicating that AILS should perform snap

of the adjacent ship to the adjacent ship's

approach path. If TRUE, snap; If FALSE, use

actual states for the adjacent ship when

checking for the own ship intrusion on the

adjacent ship.

Table 5.1.1 Larcalert_full/AILS Input Output Variables Data Dictionary

5.1.2 AILS Literals and Indices

The following class of variables are indices or literals that are used to access array elements

within the AILS algorithm. In a "C" language implementation they would be defined through

the use of the "C .... #define" statements. In Ada or other languages they could be either

32



integersorenumeratedtypes. In ourapplicationtheyareusedto showhow to accessspecific
arraydataelements.Thoseelementsaresubsequentlydefinedin thenext datadictionary
section.

INDEX/LITERAL Definition

LEVEL_I 1

LEVEL_2 2

LEVEL_3 3

LEVEL_4 4

PROTECTED_ES C_LEV_3 5

PROTECTED_ES C_LEV_4 6

LEVEL 1 DOWNRANGE 1

LEVEL 1 CROSSRANGE

LEVEL 2

LEVEL 2

LEVEL 3

LEVEL 3

LEVEL 4

LEVEL 4

DOWNRANGE

CROSSRANGE

DOWNRANGE

CROSSRANGE

DOWNRANGE

CROSSRANGE

2

3

4

5

6

7

8

LATERAL 0

AHEAD 1

BEHIND 2

ABOVE 3

BELOW 4

Table 5.1.2 AILS Indices and Literals Specifcations

5.1.3 AILS Array Element Descriptions

The following data dictionary describes the individual elements of the special arrays used to
handle AILS data.

33



variable (element)

status [LEVEL_ 1]

status[LEVEL_2]

status[LEVEL_3]

status[LEVEL_4]

status[PROTECTED_ESC_ LEV_3]

status[PROTECTED_ESC_ LEV_4]

Description

level 1 alert status: ownship

ship intruding at the adjacdent

ship: caution alert.

level 2 alert status: adjacent

ship intruding at the own ship:
caution alert.

level 3 alert status: own ship

intruding at the adjacent ship:

warning alert.

level 4 alert status: adjacent

ship intruding at the own ship:

warning alert.

protected escape zone alert

status. If TRUE, the ownship

is in the adjacent ship's

protected escape zone

protected escape zone alert

status. If TRUE, the adjacent

ship is in the own ship's

protected escape zone

aldst_e[LEVEL 1 DOWNRANGE] feet

1 CROSSRANGE]aldst_e[LEVEL

aldst_e[LEVEL 2 DOWNRANGE]

aldst_e[LEVEL 2 CROSSRANGE]

aldst_e[LEVEL 3 DOWNRANGE]

aldst_e[LEVEL 3 CROSSRANGE]

aldst_e[LEVEL 4 DOWNRANGE]

elliptical downrange alerting

parameter for level 1

elliptical cross-range alerting

parameter for level 1

elliptical downrange alerting

parameter for level 2

elliptical cross-range alerting

parameter for level 2

elliptical downrange alerting

parameter for level 3

elliptical cross-range alerting

parameter for level 3

elliptical downrange alerting

Definition/Notes

0 = no alert

1 = alert tripped

0 = no alert

1 = alert tripped

0 = no alert

1 = alert tripped

0 = no alert

1 = alert tripped

0 = no alert

1 = alert tripped

0 = no alert

1 = alert tripped

feet

feet

feet

feet

feet

feet

34



variable (element) Description Definition/Notes

parameter for level 4

aldsLe[LEVEL 4 CROSSRANGE] feetelliptical cross-range alerting

parameter for level 4

alvup[LEVEL_I] vertical alerting threshold feet

distance above for level 1

alvup[LEVEL_2] vertical alerting threshold feet
distance above for level 2

alvup[LEVEL_3] vertical alerting threshold feet

distance above for level 3

alvup[LEVEL_4] vertical alerting threshold feet
distance above for level 4

alvdown[LEVEL_l] vertical alerting threshold feet

distance below for level 1

alvdown[LEVEL_2] vertical alerting threshold feet
distance below for level 2

alvdown[LEVEL_3] vertical alerting threshold feet

distance below for level 3

alvdown[LEVEL_4] vertical alerting threshold feet
distance below for level 4

altime[LEVEL_l] alert time threshold for level 1 sec

altime[LEVEL_2] alert time threshold for level 2 sec

altime[LEVEL_3] alert time threshold for level 3 sec

altime[LEVEL_4] alert time threshold for level 4 sec

protected_esc[LATERAL] lateral protected escape zone ft

protected_esc[AHEAD] ahead protected escape zone ft

protected_esc[BEHIND] behind protected escape zone ft

protected_esc[ABOVE] above protected escape zone ft

protected_esc[BELOW] below protected escape zone ft

35



Table 5.1.3 AILS Array Element Descriptions

5.1.4 Larcalert_full Local Internal Variables Data Dictionary

Variable Type Units Description Coordinate

System

actrk double rad heading of the pursuer aircraft intruder

arcrad double rad turn radius of pursuer aircraft at the current

bank angle or turn rate.

dttrk double sec time between tangent tracks

gs double ft/sec ground speed of pursuer aircraft

gsloc double sec ground speed of evader aircraft

idtrk int number of time steps between tangent tracks

maxstep int maximum number of time steps before the

maximum alert time altime is exceeded.

tantrk double rad heading of tangent track pursuer

tpred double sec time allotted for forward prediction of current

states

trk double rad heading of pursuer aircraft pursuer

trkrate double rad/se turn rate of pursuer aircraft pursuer

c

trkdot double rad/se = -trkrate

c

xloc double feet x position of evader aircraft pursuer

yloc double feet y position of evader aircraft pursuer

trkloc double rad track angle of evader aircraft pursuer

zloc double ft altitude of pursuer airraft pursuer

zlocdot double ft/sec altitude rate of pursuer aircraft pursuer

xO double ft x position of pursuer aircraft pursuer

yO double ft y position of pursuer aircraft pursuer

xtrk double ft x position along arc, start of tangent track pursuer

36



Variable Type Units Description Coordinate

System

ytrk double ft y position along alrc, start of tangent track pursuer

COStrk double ft cosine of track angle of pursuer aircraft

SINtrk double ft sine of track angle of the pursuer aircraft

t_enter very double sec time at which the pursuer will enter the

cant evader's vertical protected threshold: caution
level

t_enter very double sec time at which the pursuer will enter the

warn evader's vertical protected threshold: warning

level

t_exit very double sec time at which the pursuer will exit the

cant evader's vertical protected threshold: caution
level

t_exit very double sec time at which the pursuer will exit the

warn evader's vertical protected threshold: warning
level

xlocpos[] double ft array of x positions of evader aircraft

ylocpos[] double ft array of y positions of evader aircraft

z0 double ft altitude of pursuer aircraft pursuer

z0dot double ft/sec altitude rate of pursuer aircraft pursuer

ctime double sec states project-ahead time for determining

caution alert

wtime double sec states project-ahead time for determining

warning alert

vflag[] int

ilook

cbit

int

int

flag indicating potential for vertical threshold

puncture. This flag is an output of the

chkvert routine and is not currently used for

anything

program loop control flag

ilook = 1: own ship is the pursuer

ilook = 2: adjacent ship is pursuer

indice used to indicate access status to caution

array

37



Variable Type Units Description Coordinate

System

wbit int indice used to indicate access status to

warning array

i int loop index

iarc int loop index (used during fan arc)

trkrate_adjus double rad adjusted track rate
ted

ajx_dp_offse double ft ownship datum point x offset in the adjacent adjacent

t prime ship coordinate frame ship

ajy_dp_offse double ft ownship datum point y offset in the adjacent adjacent

t prime ship coordinate frame ship

sin_ajpsi_off double rad sin of adjacent ship runway (approach path)

set offset angle to own ship runway

cos_ajpsi_off double rad cos of adjacent ship runway (approach path)

set offset angle to own ship runway

ajpsi_offset_ double rad negative of adjacent ship runway (approach

prime path) offset to own ship approach path

sin_ajpsi_off double rad sin of ajpsi_offset prime

set prime

cos_ajpsi_off double rad cos ofajpsi_offsetprime

set prime

xloc_unsnap double ft unsnapped x position of evader aircraft intruder

ped

yloc_unsnap double ft unsnapped y position of evader aircraft intruder

ped

zloc_unsnap double ft unsnapped z position of evader aircraft intruder

ped

sin_trkloc double sin of evader track angle: sin(trkloc)

cos_trkloc double cos of evader track angle : cos(trkloc)

elc double el coefficient for rotated caution ellipse

e2c double e2 coefficient for rotated caution ellipse

e3c double e3 coefficient for rotated caution ellipse

38



Variable Type Units Description Coordinate

System

e4c double e4 coefficient for rotated caution ellipse

elw double el coefficient for rotated warning ellipse

e2w double e2 coefficient for rotated warning ellipse

e3w double e3 coefficient for rotated warning ellipse

e4w double e4 coefficient for rotated warning ellipse

sin_trkloc_sq double sin of evader track squared
rd

cos_trkloc_s double cos of evader track squared

qrd

cdist_ double caution downrange ellipse parameter squared

downrange_

sqrd

wdist_ double warning downrange ellipse parameter squared

downrange_

sqrd

cdist_ double caution cross-range ellipse parameter squared

crossrrange_

sqrd

wdist_ double warning cross-range ellipse parameter squared

crossrrange_

sqrd

Table 5.1.4 AILS Local Variable Data Dictionary

5.1.5 Larcalert_full (AILS Executive) Algorithm Pseudo Code

Begin Larcalert_Full

/* Reset alert strings and flags */

status[LEVEL_l] = FALSE

status[LEVEL_2] = FALSE

status[LEVEL_3] = FALSE

status[LEVEL_4] = FALSE

status[PROTECTED_ESC LEV_3] = FALSE

39



status[PROTECTED_ESCLEV_4] = FALSE

/* define sines and cosines of runway offset rotation angles */

sin_ajpsi_offset = sin(ajpsi_offset)

cos_ajpsi_offset = cos(ajpsi_offset)

ajpsi_offset prime =-ajpsi_offset

sin_ajpsi_offset prime =-sin_ajpsi_offset

cos_ajpsi_offset prime = cos_ajpsi_offset

/* loop over the two scenarios, 1 = Ownship intruder 2 = Adjacent ship intruder */

for (ilook = 1 ; ilook <=2 ; ilook++) {

if (ilook == 1) {

/* On ilook = 1 first-pass, initialize for OS is intruder AJ is evader */

/* Set intruder parameters. Ownship is intruder */
actrk = ostrk

trkrate = ostrkdot

x0 = osxpos

y0 = osypos

h0 = oshpos

gs = osgs
h0dot = oshdot

/* perform evader coordinate transformations. Get evader parameters */

/* In this pass, evader positions are based on adjacent ship */

gsloc = ajgs

ajx_dp_offset_prime = cos_ajpsi_offset * ajx_dp_offset +

sin_ajpsi_offset * ajy_dp_offset

ajy_dp_offset prime = -sin_ajpsi_offset * ajx_dp_offset +

cos_ajpsi_offset * ajy_dp_offset

/* Compute unsnapped evader positions. Perform regardless of snapping */

/* because we need these values to evaluate protected zones */

xloc_unsnapped = cos_ajpsi_offsetprime*(ajxpos+ajx_dp_offset_prime) +

sin_ajpsi_offset_prime*(ajypos + ajy_dp_offsetprime)

yloc_unsnapped =-sin_ajpsi_offset prime*(ajxpos+ajx_dp_offset prime)+

cos_ajpsi_offsetprime*(ajypos + ajy_dp_offset_prime)

hloc_unsnapped = ajhpos + ajh_dp_offset

/* logic whether or not to snap evader */

if (aj_snap_flag == FALSE) {/* no snap to glidepath and localizer */

hloc = ajhpos + ajh_dp_offset

hlocdot= ajhdot

trkloc = ajtrk + ajpsi_offset prime

xloc = xloc_unsnapped

yloc = yloc_unsnapped

40



} else {
/* snap to glidespath and localizer */

/* assume threshold location 1000 ft from gpip */

hloc = ajh_dp_offset + ajtch - ajxpos * tan(ajglide)

hlocdot= -gsloc * tan(ajglide)

trkloc = ajpsi_offset prime

xloc = cos_ajpsi_offset_prime*(ajxpos+ajx_dp_offset_prime) +

sin_ajpsi_offset prime* ajy_dp_offset_prime

yloc = -sin_ajpsi_offsetprime*(ajxpos+ajx_dp_offseyprime)+

cos_ajp si_offsetprime*ajy_dp_offset prime

}
/* trkloc's snapped/unsnapped status is dependent on snap_flag */

sin_trkloc = sin(trkloc)

cos_trkloc = cos(trkloc)

sin_trkloc_sqrd = sin_trkloc * sin_trkloc

cos_trkloc_sqrd = cos_trkloc * cos_trkloc

/* set elliptical alerting parameters */

cdist_downrange_sqrd = aldst_e[LEVEL 1 DOWNRANGE] *

aldste[LEVEL 1 DOWNRANGE]

cdist_crossrange_sqrd = aldst_e[LEVEL 1 CROSSRANGE] *

aldst_e[LEVEL 1 CROSSRANGE]

wdistdownrange_sqrd = aldst_e[LEVEL 3 DOWNRANGE] *

aldste[LEVEL 3 DOWNRANGE]

wdistcrossrange_sqrd = aldst_e[LEVEL 3 CROSSRANGE] *

aldst_e[LEVEL 3 CROSSRANGE]

e4c = cdistdownrange_sqrd * cdistcrossrange_sqrd

e4w = wdist_downrange_sqrd * wdist_crossrange_sqrd

elc = (cdist_downrange_sqrd*sin_trkloc_sqrd + cdist_crossrange_sqrd*cos_trkloc_sqrd)

e2c = (cdistdownrange_sqrd-cdisycrossrange_sqrd)*2.0*cos_trkloc*sin_trkloc

e3c = (cdistdownrange_sqrd*cos_trkloc_sqrd + cdistcrossrange_sqrd*sin_trkloc_sqrd)

elw = (wdistdownrange_sqrd*sin_trkloc_sqrd +

wdist_crossrange_sqrd*cos_trkloc_sqrd)

e2w = (wdistdownrange_sqrd-wdist_crossrange_sqrd)*2.0*cos_trkloc*sin_trkloc

e3w = (wdistdownrange_sqrd*cos_trkloc_sqrd +

wdistcrossrange_sqrd* sin_trkloc_sqrd)

/* set alerting times */

ctime = altime[LEVEL_l]

wtime = altime[LEVEL 3]

cbit = LEVEL_I

wbit = LEVEL_3

/* Check for esc zone violation of adjacent ship */

41



/* Perform this here because ownship coordinate system is available */

if ((xloc_unsnapped < osxpos + protected_esc[AHEAD]) &&

(xloc_unsnapped > osxpos - protected_esc[BEHIND]) &&

(hloc_unsnapped < oshpos + protected_esc[ABOVE]) &&

(hloc_unsnapped > oshpos - protected_esc[BELOW])) {

if (ajy_dp_offset > 0.0) { /* The adjacent ship runway is on the right */

if (yloc_unsnapped < (osypos+protected_esc[LATERAL])) {

status[LEVEL_4] = TRUE

status[PROTECTED_ESC LEV_4] = TRUE

} else if (ajy_dp_offset < 0.0) {/*The adjacent ship runway is on the left*/

if (yloc_unsnapped > (osypos-protected_esc[LATERAL])) {

status[LEVEL 4] = TRUE

status[PROTECTED_ESC LEV_4] = TRUE

}
}

/* Get caution vertical alerting threshold status and times */

chkvertfull(hloc,hlocdot, h0, h0dot, alvup[1], alvdown[1],

&t_enter vert_caut, &t_exit vert_caut, &vflag[1])

/* Get warning vertical alerting threshold status and times */

chkvertfull(hloc,hlocdot, h0, h0dot, alvup[3], alvdown[3],

&t_enter vert_warn, &t_exit vert_warn, &vflag[3])

} else {

/* On ilook = 2, 2nd pass, initialize for AJ is intruder OS is evader */

/* Set intruder parameters */

actrk = ajtrk

trkrate = ajtrkdot

x0 = ajxpos

y0 = ajypos

h0 = ajhpos

gs = ajgs

h0dot = ajhdot

/* Perform evader coordinate transformations. Compute evader parameters */

/* In this pass, use own ship as evader */

gsloc = osgs

/* Compute unsnapped evader positions. Perform regardless of snapping */

/* because we need these values to evaluate protected zones. */

xloc_unsnapped = cos_ajpsi_offset * (osxpos-ajx_dp_offset) +

42



sin_ajpsi_offset* (osypos-ajy_dp_offset)
yloc_unsnapped= -sin_ajpsi_offset* (osxpos-ajx_dp_offset)+

cos_ajpsi_offset* (osypos-ajy_dp_offset)
hloc_unsnapped= oshpos

/* logic whether or not to snap evader */

if (os_snap_flag == FALSE) {/* no snap to glidepath and localizer */

hloc = oshpos- ajh_dp_offset
hlocdot= oshdot

trkloc = ostrk + ajpsi_offset

xloc = xloc_unsnapped

yloc = yloc_unsnapped

} else {

/* snap to glidepath and localizer */

/* assume threshold location 1000 ft from gpip */

hloc = -ajh_dp_offset + ostch - osxpos*tan(osglide)

hlocdot= -osgs * tan(osglide)

trkloc = ajpsi_offset

xloc = cos_ajpsi_offset * (osxpos-ajx_dp_offset) +

sin_ajpsi_offset * (-ajy_dp_offset)

yloc = -sin_ajpsi_offset * (osxpos-ajx_dp_offset) +

cos_ajpsi_offset * (-ajy_dp_offset)

/* trkloc's snapped/unsnapped status is dependent on snap_flag */

sin_trkloc = sin(trkloc)

cos_trkloc = cos(trkloc)

sin_trkloc_sqrd = sin_trkloc * sin_trkloc

cos_trkloc_sqrd = cos_trkloc * cos_trkloc

/* set elliptical alerting parameters */

cdist_downrange_sqrd = aldst_e[LEVEL 2 DOWNRANGE] *

aldste[LEVEL 2 DOWNRANGE]

cdist_crossrange_sqrd = aldst_e[LEVEL 2 CROSSRANGE] *

aldst_e[LEVEL 2 CROSSRANGE]

wdistdownrange_sqrd = aldst_e[LEVEL 4 DOWNRANGE] *

aldste[LEVEL 4 DOWNRANGE]

wdistcrossrange_sqrd = aldst_e[LEVEL 4 CROSSRANGE] *

aldst_e[LEVEL 4 CROSSRANGE]

e4c = cdistdownrange_sqrd * cdistcrossrange_sqrd

e4w = wdist_downrange_sqrd * wdistcrossrange_sqrd

elc = (cdistdownrange_sqrd*sin_trkloc_sqrd + cdist_crossrange_sqrd*cos_trkloc_sqrd)

e2c = (cdist_downrange_sqrd-cdist_crossrange_sqrd)*2.0*cos_trkloc*sin_trkloc

e3c = (cdist_downrange_sqrd*cos_trkloc_sqrd + cdistcrossrange_sqrd*sin_trkloc_sqrd)

elw = (wdistdownrange_sqrd*sin_trkloc_sqrd +

43



wdist_crossrange_sqrd*cos_trkloc_sqrd)
e2w= (wdistdownrange_sqrd-wdist_crossrange_sqrd)*2.0*cos_trkloc*sin_trkloc
e3w= (wdistdownrange_sqrd*cos_trkloc_sqrd+

wdistcrossrange_sqrd*sin_trkloc_sqrd)

/* set alerting times */

ctime = altime[LEVEL_2]

wtime = altime[LEVEL 4]

cbit = LEVEL_2

wbit = LEVEL 4

/* Check for protected_esc violation of own ship */

/* Perform this here because adjacent ship coordinate system is available */

if ((xloc_unsnapped < ajxpos + protected_esc[AHEAD]) &&

(xloc_unsnapped > ajxpos - protected_esc[BEHIND]) &&

(hloc_unsnapped < ajhpos + protected_esc[ABOVE]) &&

(hloc_unsnapped > ajhpos - protected_esc[BELOW])) {

if (ajy_dp_offset > 0.0) {/* The ownship ship runway is on the left */

if (yloc_unsnapped > (ajypos-protected_esc[LATERAL])) {

status[LEVEL_3] = TRUE

status[PROTECTED_ESC_LEV_3] = TRUE

}
} else if (ajy_dp_offset < 0.0) {/*The ownship ship runway is on the right*/

if (yloc_unsnapped < (ajypos+protected_esc[LATERAL])) {

status[LEVEL_3] = TRUE

status[PROTECTED_ESC LEV_3] = TRUE

}

/* Get caution alerting threshold status and times */

chkvertfull(hloc,hlocdot, h0, h0dot, alvup[2], alvdown[2],

&t_enter vert_caut, &t_exit vert_caut, &vflag[2])

/* Get warning alerting threshold status and times */

chkvertfull(hloc,hlocdot, h0, h0dot, alvup[4], alvdown[4],

&t_enter vert_warn, &t_exit vert_warn, &vflag[4])

} /* End of ilook initialization block */

/* The following section deals with the intruder turn/turn rate profile */

/* Use track rate to determine turn rate */

/* Apply track rate dead band if necessary */

if (fabs(trkrate) < trkratedb) {

44



/* Bank angle deadband */
arcrad = 10000000000.0

trkrate_adjusted = 0.0

} else {

trkrate_adjusted = trkrate

arcrad = gs/trkrate_adjusted

arcrad = fabs(arcrad)

}

/* set intruder track angle and turn rate in "conventional" coordinate system */
trk = -actrk

if (trkrate_adjusted != 0.0) trkdot = -trkrate_adjusted

if (trkdot < 0.0) trk = trk + PI

/* Set time interval between prediction of straight tracks tangent to arc.

The tracks should be 1.5 to 3.0 degrees apart (trkrate*dttrk) */

if (trkrate_adjusted != 0.0) {

if (fabs(trkrate_adjusted) >= 3.0 * DEQTO_RAD) dttrk = 0.5

else if (fabs(trkrate_adjusted) >= 1.5 * DEQTO_RAD) dttrk = 1.0

else if (fabs(trkrate_adjusted) >= 0.75 * DEQTO_RAD) dttrk = 2.0
else dttrk = 4.0

idtrk = dttrk/tstep + 0.5

}
else {

idtrk = 999

}

/* Load evader aircraft position array */

maxstep = min(ctime,turntime)/tstep + 0.5

for (i=0 ; i<=maxstep ; i++) {

xlocpos[i] = xloc + i*tstep*gsloc * cos_trkloc

ylocpos[i] = yloc + i*tstep*gsloc * sin_trkloc

}

/* Check curved path with tangent tracks. Set track angle. */

COStrk = cos(trk)

SINtrk = sin(trk)

for (iarc=0 ; iarc<=maxstep ; iarc++) {

tpred = iarc*tstep

xloc = xlocpos[iarc]

yloc = ylocpos[iarc]

/* Predict position along arc */

xtrk = x0 + arcrad*(sin(trk+trkdot*tpred) - SINtrk)

ytrk = y0 + arcrad*(cos(trk+trkdot*tpred) - COStrk)

45



/* Check predicted position or tangent track depending on time */

if (fmod(iarc,idtrk) != 0) {

/* Check predicted position */

chkrange_full(tpred,xtrk,xloc,ytrk,yloc,elc,e2c,e3c,e4c,

elw,e2w,e3w,e4w,

ctime,wtime, tenter vert_caut, t_enter vert_warn,

texit_vert_caut, texit_verywarn, cbit,wbit, status)

} else {

/* Check tangent track */

tantrk = actrk + tpred*trkrate_adjusted

chktrack_full(tpred,tenter vert_caut,tenter vert_warn,

texit_vert_caut,t_exit vert_warn,xloc,yloc,gsloc,trkloc,

xtrk,ytrk,gs,tantrk,elc,e2c,e3c,e4c,elw,e2w,e3w,e4w,

ctime,wtime,cbit,wbit, status)

} /* End of if-then-else for fmod(iarc,idtrk != 0) */

} /* End of for iarc = 0 to maxstep loop */

}/* End of ilook = 1 to 2 for loop */
return

} /* End of Subroutine Larcalert_full */

5.2 Subunit Chkvert_full Description

5.2.1 Subunit Chkvert_full Input Parameters

Variable Type Units Description Coordinate

System

hloc double feet evader altitude intruder

hlocdot double ft/sec evader altitude rate intruder

h0 double feet intruder altitude intruder

h0dot double ft/sec intruder altitude rate intruder

alvup double feet vertical alert distance threshold above evader

alvdown double feet vertical alert distance threshold below evader

Table 5.2.1 Subunit Chkvert_full Input Parameters

46



5.2.2 Subunit Chkvert_full Output Parameters

Variable

t_enter_vert

t_exit_vert

vflag

Type Units Description

double feet

double feet

int int

entry time of intruder into evader's protected
vertical zone

exit time of intruder from evader's protected
vertical zone

flag indicating that vertical intrusion has

occurred

Coordinate

System

Table 5.2.2 Subunit Chkvert_full Output Parameters

5.2.3 Subunit Chkvert full Local Variables

Variable Type Units Description

h_ceil_thresh double

h_floor_thres double

h

vert_sep_rate int

feet

feet

int

ceiling threshold above evader

floor threshold below evader

vertical separation rate between intruder and

evader.

Coordinate

System

Table 5.2.3 Subunit Chkvert full Local Variables

5.2.4 Subunit Chkvert_full Algorithm Pseudo Code

local constant definition:
ALT RATE DEADBAND = 0.1

Begin Chkvert_Full

{
*t_enter vert = 999.0

*t_exit_vert = -999.0

/* Compute hockey puck ceiling and floor altitudes */

h_ceil_thresh = hloc + alvup
h_floor_thresh = hloc - alvdown

/* Compute vertical separation rate. */

vert_sep_rate = hOdot - hlocdot

47



if (h0 >= h_ceil_thresh) {

/* adjacent ship is above the ceiling threshold */

if (vert_sep_rate >= -ALT RATE_DEADBAND ) {

/* adjacent ship vertical separation constant or increasing */

*vflag = FALSE
return

else{

/* adjacent ship vertical separation decreasing */

*t_enter vert = -(h0 - h_ceil_thresh)/vert_sep_rate

*t_exit_vert = -(h0 - h_floor_thresh)/vert_sep_rate

} else if (h0 <= h_floor_thresh){

/* adjacent ship is below the floor threshold */

if (vert_sep_rate <= ALT RATE_DEADBAND ){

/* adjacent ship vertical separation constant or increasing */

*vflag = FALSE
return

else{

/* adjacent ship vertical separation decreasing */

*t_enter vert = (h_floor_thresh - h0)/vert_sep_rate

*t_exit_vert = (h_ceil_thresh - h0)/vert_sep_rate

}
} else{

/* adjacent ship is between the ceiling and floor thresholds */

*t_enter_vert = 0.0

if (vert_sep_rate >= ALT RATE_DEADBAND) {

/* adjacent ship climbing relative to thresholds */

*t_exit_vert = (h_ceil_thresh-h0)/vert_sep_rate

else if (vert_sep_rate <= -ALT RATE_DEADBAND){

/* adjacent ship descending relative to thresholds */

*t_exit_vert = -(h0 - h_floor_thresh)/vert_sep_rate

else *t_exit vert = 1000000.0/* adjacent ship is relatively level */

*vflag = TRUE
return

} /* End of Subroutine Chkvert_full */

5.3 Subunit Chkrange_full Description

Called from: Larcalert_full

Purpose: Check for instantaneous intrusion of the intruder in the evader's protected alert zone.

48



5.3.1 Subunit Chkrange_full Input Parameters

Variable Type

tpred double

xtrk double

ytrk double

xloc double

yloc double

elc double

e2c double

e3c double

e4c double

elw double

e2w double

e3w double

e4w double

ctime double

wtime double

tenter vert double

_ cant

tenter vert double

_ warn

t_exit very double

cant

t_exit very double

warn

cbit int

Units

sec

ft

ft

feet

feet

sec

sec

sec

sec

sec

sec

Description Coordinate

System

time allotted for forward prediction of current

states.

x position along arc, start of tangent track pursuer

y position along alrc, start of tangent track pursuer

x position of evader aircraft pursuer

y position of evader aircraft pursuer

el coefficient for rotated caution ellipse

e2 coefficient for rotated caution ellipse

e3 coefficient for rotated caution ellipse

e4 coefficient for rotated caution ellipse

el coefficient for rotated warning ellipse

e2 coefficient for rotated warning ellipse

e3 coefficient for rotated warning ellipse

e4 coefficient for rotated warning ellipse

states project-ahead time for determining
caution alert

states project-ahead time for determining

warning alert

time at which the pursuer will enter the evader's

vertical protected threshold: caution level

time at which the pursuer will enter the evader's

vertical protected threshold: warning level

time at which the pursuer will exit the evader's

vertical protected threshold: caution level

time at which the pursuer will exit the evader's

vertical protected threshold: warning level

indice used to indicate access status to caution

array

49



Variable

wbit

Type Units Description

int indice used to indicate access status to warning

array

Coordinate

System

Table 5.3.1 Subunit Chkrange_Full Input Parameters

5.3.2 Subunit Chkrange_full Output Parameters

Variable

status[lO0]

Type Units Description

int Vector containing alerting routine status as well

as other miscellaneous information

Coordinate

System

Table 5.3.2 Subunit Chkrange_Full Output Parameters

5.3.3 Subunit Chkrange_full Local Variables

Variable

ellipse_

check_cant

ellipse_

check_warn

dx2

dy2

dxdy

Type Units Description

double

double

double

double

double

elliptical range upper bound threshold factor for

caution alert

elliptical range upper bound threshold factor for

warning alert

x difference between pursuer and evader

squared

y difference between pursuer and evader

squared

cross term for x and y difference between

pursuer and evader

Coordinate

System

pursuer

pursuer

pursuer

Table 5.3.3 Subunit Chkrange_full Local Variables

50



5.3.4 Subunit Chkrange_full Pseudocode

Begin Chkrange_Full

{
/* Check predicted position */

dx2 = (xtrk-xloc)*(xtrk-xloc)

dy2 = (ytrk-yloc)*(ytrk-yloc)

dxdy = (xtrk-xloc)*(ytrk-yloc)

ellipse_check_cant = elc*dx2 + e2c*dxdy + e3c*dy2

ellipse_check_warn = elw*dx2 + e2w*dxdy + e3w*dy2

/* Check for caution alert */

if ( (tpred <= crime)

&& (ellipse_check_cant <= eAc)

&& (t_enter vert_caut <= tpred)

&& (t_exitverycaut >= tpred) ) {

status[cbit] = TRUE

}

/* Check for warning alert */

if ( (tpred <= wtime)

&& (ellipse_check_warn <= eAw)

&& (t_enter vert_warn <= tpred)

&& (t_exitverywarn >= tpred) ) {

status[wbit] = TRUE

}

return

} /* End Chkrange_full */

5.4 Subunit Chktrack_full Description

Called from: Larcalert_full

Purpose: Check current fan leg for instantaneous intrusion of the intruder into the evader's

protected alert zone.

5.4.1 Subunit Chktrack_full Input Parameters

Type Units DescriptionVariable

sec

ft

tpred double

xtrk double

Coordinate

System

time allotted for forward prediction of current
states.

x position along arc, start of tangent track pursuer

51



Variable Type

ytrk double

gs double

xloc double

yloc double

gsloc double

trkloc double

tantrk double

elc double

e2c double

e3c double

e4c double

elw double

e2w double

e3w double

e4w double

ctime double

wtime double

tenter vert double

_ cant

tenter vert double

_ warn

t_exit very double

cant

t_exit very double

warn

cbit int

Units

ft

ft/sec

feet

feet

sec

rad

rad

sec

sec

sec

sec

sec

sec

Description Coordinate

System

y position along alrc, start of tangent track pursuer

ground speed of pursuer aircraft

x position of evader aircraft pursuer

y position of evader aircraft pursuer

ground speed of evader aircraft

track angle of evader aircraft pursuer

heading of tangent track pursuer

el coefficient for rotated caution ellipse

e2 coefficient for rotated caution ellipse

e3 coefficient for rotated caution ellipse

e4 coefficient for rotated caution ellipse

el coefficient for rotated warning ellipse

e2 coefficient for rotated warning ellipse

e3 coefficient for rotated warning ellipse

e4 coefficient for rotated warning ellipse

states project-ahead time for determining
caution alert

states project-ahead time for determining

warning alert

time at which the pursuer will enter the evader's

vertical protected threshold: caution level

time at which the pursuer will enter the evader's

vertical protected threshold: warning level

time at which the pursuer will exit the evader's

vertical protected threshold: caution level

time at which the pursuer will exit the evader's

vertical protected threshold: warning level

indice used to indicate access status to caution

array

52



Variable

wbit

Type

int

Units Description

indice used to indicate access status to warning

array

Coordinate

System

Table 5.4.1 Subunit Chktrack_full Input Parameters

5.4.2 Subunit Chktrack_full Output Parameters

Type Units DescriptionVariable

status[lO0] int Vector containing alerting routine status as well

as other miscellaneous information

Table 5.4.2 Subunit Chktrack_full Output Parameters

5.4.3 Subunit Chktrack full Local Variables

Units

ft

ft

ft/sec

ft/sec

sec

sec

sec

sec

sec

Variable Type

dx double

dy double

dxdt double

dydt double

tan double

tenter hot double

texit hot double

tend_check double

_cant

tend_check double

_warn

time_band double

ellipse_ double
check

sec

Coordinate

System

Description Coordinate

System

aircraft x separation at time tpred intruder

aircraft y separation at time tpred intruder

relative x axis groundspeed intruder

relative y axis groundspeed intruder

time to halfway between entry and exit

time that horizontal threshold is entered

time that horizontal threshold is exited

time from current to end check (Caution)

time from current to end check (Warning)

time width inside cylinder

variable to compute ellipse bounds check

Table 5.4.3 Subunit Chktrack full Local Variables

53



5.4.4 Subunit Chktrack_Full Algorithm Pseudocode

local constant definition."

VERTEX THRESHOLD = 0.05

Begin Chktrack_full

{
/* Compute relative position and relative ground speed */
dx = xtrk-xloc

dy = ytrk-yloc

dxdt = gs*cos(tantrk) - gsloc * cos(trkloc)

dydt = gs*sin(tantrk) - gsloc * sin(trkloc)

/* Check relative distances constant case) */

if ((fabs(dxdt) < 0.1) && (fabs(dydt) < 0.1)) {

/* Check caution alert level */

ellipse_check = elc*dx*dx + e2c*dx*dy + e3c*dy*dy

if ((ellipse_check <= eric) && (tenter vert_caut < ctime) &&

(texiyverycaut > tpred)){

status[cbit] = TRUE

}

/* Check warning alert level */

ellipse_check = elw*dx*dx + e2w*dx*dy + e3w*dy*dy

if ((ellipse_check <= e4w) && (tenter_verywarn < wtime) &&

(t_exit vert_warn > tpred) && (tpred < wtime)){

status[wbit] = TRUE

}
return

/* Evaluate case for caution alert ,/

/* Compute quadratic equation terms for time pursuer breach separation distance */

a = elc*dxdt*dxdt + e2c*dxdt*dydt + e3c*dydt*dydt

b = 2.0*elc*dx*dxdt + e2c*(dx*dydt + dy*dxdt) + 2.0*e3c*dy*dydt

/* Compute time to halfway between entry and exit (tan) */

/* Note: under elliptical formulation, tan represents halfway time between */

/* entry and exit times. Not necessarily the point of closest approach */

tan = -b/(2.0*a) + tpred

54



/* compute time at which we will no longer check for breach */

tend_check_cant =ctime

if (t_exit_vert_caut <= t_end_check_cant) t_end_check_cant = t_exit_vert_caut

/* Evaluate quadratic to determine times of separation distance breach (if any) */

/* If necessary, determine collison status by comparison to vertical breach times */

c = elc*dx*dx + e2c*dx*dy + e3c*dy*dy - e4c
d = b*b - 4.0*a*c

if (d <= -VERTEX THRESHOLD) {

/* intruder trajectory never breaches horizontal thresholds */

/**MRCJ status[cbit] = FALSE **/

} else if (d <= VERTEX THRESHOLD) {

/* intruder trajectory intersects horizontal thresholds at vertex */

if ( (tan >= t_enter vert_caut) && (tan <= t_end_check_cant)){

status[cbit] = TRUE

}
} else {

/* intruder trajectory breaches horizontal thresholds */

time_band = sqrt(d)/(2.0*a)
t_enter hor = tan - time_band

t_exit hor = tan + time_band

/* Check horizotal, vertical, and end check times for alert

if ( (t_exit_hor > t_enter vert_caut)

&& (t_enter hor < tend_check_cant)

&& (t_enter vert_caut <= t_end_check_caut+0.01)

&& (texiyhor > tpred)

&& (texiyverycaut > tpred)) {

status[cbit] = TRUE

/* End of if (d <= -VERTEX THRESHOLD) clause */

,/

/* Evaluate case for warning alert. ,/

/* Compute quadratic equation terms for time pursuer breach separation distance */

a = elw*dxdt*dxdt + e2w*dxdt*dydt + e3w*dydt*dydt

b = 2.0*elw*dx*dxdt + e2w*(dx*dydt + dy*dxdt) + 2.0*e3w*dy*dydt

/* Compute time to halfway between entry and exit (tan) */

/* Note: under elliptical formulation, tan represents halfway time between */

/* entry and exit times. Not necessarily the point of closest approach */

tan = -b/(2.0*a) + tpred

/* Compute time at which we will no longer check for breach */

55



tend_check_warn= wtime
if (texiyverywarn <= tend_check_warn)tend_check_warn= texit_vert_warn

/* Evaluate quadratic to determine times of separation distance breach (if any) */

/* If necessary, determine collison status by comparison to vertical breach times */

c = elw*dx*dx + e2w*dx*dy + e3w*dy*dy - e4w
d = b*b - 4.0*a*c

if (d <= -VERTEX THRESHOLD) {

/* intruder trajectory never breaches horizontal thresholds */

/**MRCJ status[wbit] = FALSE **/

} else if (d <= VERTEX THRESHOLD) {

/* intruder trajectory intersects horizontal thresholds at vertex */

if ( (tan >= t_enter vert_warn) && (tan <= t_end_check_warn)){

status[wbit] = TRUE

}
} else {

/* intruder trajectory breaches horizontal thresholds */

time_band = sqrt(d)/(2.0*a)

t_enter hor = tan - time_band

t_exit hor = tan + time_band

/* Check horizotal, vertical, and end check times for alert

if ( (texiyhor > t_enter vert_warn)

&& (tenter hor < tend_check_warn)

&& (t_enter vert_warn <= t_end_check_warn+0.01)

&& (texiyhor > tpred)

&& (texiyverywarn > tpred)) {

status[wbit] = TRUE

}
}/* End of if (d <= -VERTEX_THRESHOLD) clause */

,/

return

/* End Chktrack_full */

56



6 AILS Pre-Call and Post Call Requirements and Recommendations

This sectiondescribesprocessingthatcanor shouldbedoneprior to andaftercalling theAILS
alertingalgorithms,anddescribeshow the algorithmshouldbecalled.

6.1 Overview and Flowchart For AILS Pre and Post-processing

The preprocessing that is performed prior to calling AILS can be classified by the level of

importance. Some of the functions described in this section fall under the "required" category,

some are declared as "recommended," while the rest fall into the" optional" classification.

The descriptions of each function will indicate this classification. The level of importance is

also reflected in the flow chart of Figure 6.2.1, which demonstrates a recommended sequence of

processing for the functional blocks.

Depending upon the implementation and the format of the data that is available for AILS, some

of the functional blocks and associated processing shown in Figure 6.2. lmay increase or

decrease in relevance and complexity.

6.2 Calling Rate for AILS

AILS Calling frequency = 1 HZ

Current analysis has been predicated on a design call frequency of 1 Hz. From an algorithm

performance standpoint, it is not necessary to call AILS at a higher rate than 1 Hz. If

implementation considerations require that this call frequency is lowered, additional analysis

may be required to verify adequate system performance. The algorithm may actually perform

worse at a higher execution rate since it will get more false alarms and would require additional

processor throughput.

If the algorithm is to be called at a rate other than 1 HZ, no modifications are required to the

call list of Larcalert_Full: There is no time step argument to the core AILS algorithm.

However, prior to calling AILS, if a track rate filter (see section 6.5) is employed, the

deltat_call to that filter should be appropriately adjusted.

57



Begin AILS Executive Processing_

I

Set pointers for own ship processing }

"X

Perform initializations if necessary: /

•Process runway information J•Initialize filters and states

Convert to AILS coordinates ]

I_omp.totrackratoI

I

Set pointers for adjacent ship processing ]

Perform initializations if necessary:]
•Process runway information
•Initialize filters and states

Convert to AILS coordinates ]

÷
I_omp.totrackratoI

÷

Detect own ship on/off approach. ]

V

Detect adjacent ship on/off approach ]

Set snap conditions. Adjust ellipse size and alert times: See section 2.8

Call LarcalertFull ]

If necessary, post process alerts: See section 2.8 ]

-End of executive AILS processing g_

Functionality Requirement

/i Required ]

Figure 6.2.1 Relevant Pre and Post Processing For Larcalert_full

58



6.3 Conversion To AILS Coordinates

The format of the aircraft navigation variables will depend upon the specific components and

implementation of the system that hosts AILS. These variables will likely need to be

transformed from the available format into the local AILS runway coordinate system. This

transformation will typically require the knowledge aircraft states in conjunction with the local

approach parameters. Figure 6.3.1 below demonstrates such a conversion. The approach data

will likely be constant, while the aircraft data will be periodic.

Perform conversion for own ship and adjacent ship

Aircraft dat,t

lat, lon, msl alt, I

north velocity, _"I
east velocity

vertical velocity

Approach data:

Approach datum point coordinates

Approach heading parameters

Glide path angle

Datum poin I crossing height

Convert to AILS

!Coordinates

Aircraft states

runway coordinates:

x, y, h, vx, vy, vh

Figure 6.3.1 Conversion to AILS Coordinates

For detailed descriptions of the AILS local runway coordinate system, see section 3.2:

Definition Of Internal AILS Coordinate System.

6.4 Track and Track Rate Derivation

During its trajectory predictions and extrapolations, AILS requires turn information in the form

of track rate. Depending on the avionics of the implemented system, track rate may not be

available. If not, track rate must be derived from the horizontal velocity vector components.

59



Thefollowing equationsarea suggestedderivationmethodfor tracktrack rate:

Equations For Track Rate Derivation

delta_time = time(k) - time(k-l)

track_angle(k) = atan2(ownship_velocity_east(k),ownship_velocity north(k))

track_angle_rate(k) = (track_angle(k) - track_angle(k- 1))/delta_time

Table 6.4.1 Equations For Track Rate Derivation

Note that the derived track angle is with respect to true north in a North-East-Down (NED)

coordinate frame. This track and track rate may need to be further transformed into the AILS

runway coordinate system.

It is also possible that the derived track rate can be noisy due to the differentiation of noisy

velocity components. Section 6.5 discusses use of a track rate filter to alleviate this problem.

6.5 Track Rate Filter

Differentiated noisy velocity components will produce noisy derived track rates. Gusts,

turbulence, and the pilot's flying characteristics will also contribute to noisy or exaggerated

track rates.

Track Rate
a

s+a
Filtered Track Rate

Figure 6.5.1 Track Rate Filter

Noisy track rates can affect the algorithm in an adverse manner because false or exaggerated

turn rates can lead to misleading extrapolations of aircraft states. This can contribute to false

alarm or unnecessary alert outcomes of AILS. It is therefore highly recommended that the

derived track rates are filtered using a first order lag.

Rather than specifying the filter constant "a" directly, it is recommended that a frequency ratio

factor be specified instead. This is to assure stability of the designed filter under all calling

rates. The frequency ratio is defined as:

filter_frequency, a = frequency_ratio_factor / calling_period

60



This first orderfilter wasdigitally implementedfor track-rateprocessingof thecurrentversion
of AILS. Thefollowing parameterswereused:

calling period = 1 sec

frequency_ratio_factor =. 18

a =. 18 radians/sec

6.6 Data Integrity Test

Current analysis of the AILS system will allow engineers to assess the performance of AILS

under the implemented system configuration. Sensitivity analysis will show how system

performance metrics will vary with the data characteristics. Data integrity limits can be

deduced from such analysis and such limits should be applied in some form of data integrity

test.

An example would be that of the horizontal position error from the differential GPS system.

Sensitivity analysis can determine acceptable values of GPS system Horizontal Figure Of Merit

(HFOM) that allow the system to meet performance metrics. Integrity limits can then be

specified where failure to pass HFOM tests would preclude aircraft from being paired under

AILS protection. Such tests should be applied for all relevant navigation data used by the AILS

algorithm. The relevant data to be verified is listed:

• horizontal and vertical velocities

• horizontal and vertical positions

The analysis and tests should typically address the following attributes:

• uncorrelated errors (noise)

• first and second order errors of the states

• latency errors

• time tagging accuracy and time uncertainty errors

• parameter update rate

6.7 Extrapolate and Time Align Data

Aircraft position and velocity data that are available to the AILS algorithm prior to calling

AILS will likely have originated from two sources: the own ship and the adjacent ship.

Depending on the system and implementation, the data should have proper time tags associated

with the time of validity of the data.

Prior to calling AILS, and prior to comparing the data in a common frame of reference, the data

should be extrapolated and aligned to the current system time in the processor of the own ship.

61



This shouldbeperformedby using straightfirst orderextrapolationof velocity to theposition
states:

x (extrapolated)= x (time_tagged)+ dx/dt * time_delta_from_taggedto current

y (extrapolated)= y (time_tagged)+ dy/dt * time_delta_from_taggedto current

h (extrapolated)= h (time_tagged)+ dh/dt* time_delta_from_taggedto current

wherethetime_delta_from_taggedto currentis thetime deltabetweenthetime-of-validity for
thedataandthecurrenttime prior to calling AILS.

6.8 Compute Range, Range Rate, and Bearing to the Potential AILS Aircraft

Although not a requirement for output from AILS, it can be useful to compute values such as

the relative range, range rate, and bearing to aircraft that are emitting ADS-B in the vicinity of

the own aircraft. This information can be useful in determining if these aircraft are of potential

threat (see section 6.9) to each other. In the case where the aircraft are NOT mutual threats,

AILS would NOT be called which will prevent these values from being internally computed

within AILS. If the user relied on these parameters for system functions such as displays, it is

recommended that these values be computed outside of core AILS, regardless of whether or not
AILS is called.

When the aircraft navigation states have been converted to local runway coordinates, the x, y,

and h positions will be relative to each ship's runway datum point. Transformations must be

performed to get the aircraft into a single coordinate system before the relative states can be

computed. Such coordinate transformations were described in detail in section 3.2: Definition

Of Internal AILS Coordinate System.

6.9 Determine AILS Aircraft Pairing

Recall that an AILS "pair" constitutes two aircraft that are in a simultaneous parallel approach

situation and are under protection of the AILS algorithm: AILS is invoked with these aircraft

as players in the own ship/adjacent ship scenario. Any particular aircraft on an approach at any

time can be paired with more than one other aircraft that is of potential threat.

Aircraft should become eligible to be paired only if they are established on final approach. The

AILS Path Length (APL) should be used as a factor to certify that an aircraft is close enough to

the appropriate runway in order to be declared as being on final approach. Recall that once the

inbound aircraft enter the APL, they may begin to lose the required 1000 ft vertical separation.

Once on final approach, it may still be impractical to pair all aircraft on the approach with all

the other aircraft on the adjacent parallel approach. Only aircraft that can potentially threaten

each other should be paired. It is therefore recommended that criteria should be established to

determine which aircraft to designate as AILS pairs. The criteria can be based on parameters

such as range and range-rate between the aircraft. Additionally, there should be smooth

transitions between the predominant overall separation assurance system (probably TCAS) and

62



AILS alerting. Thefollowing subsectionprovidesin C codeform, the logic thatwasusedto
determineAILS pairing underconfigurationimplementedin thesimulationandflight testsin
1999.

6.9.1RangePairs Test Code

This supplemental section contains the code used to determine AILS pairing based on range

and range rate. The determination of pairing is also a function of whether or not the aircraft

being tested is currently paired. Therefore, the parameter casper_pairs_flag is an input/output

parameter that reflects the pairing mode before this routine is called. The commanded pairing

mode is reflected in the casper_pairs_flag upon return from the routine. Instructions for

setting this flag can also be seen in Table 6.9.1.

variable type units notes

range double feet range to other aircraft

range_rate double feet/sec range rate to other aircraft

int booleancasper pairs

_flag

Input/Output parameter. The current paired status with

respect to the aircraft in question has to be properly

reflected in this variable prior to call. Upon return, the

commanded pairing status is reflected in the variable.

Input setting of casper_pairs_flag:

If currently paired, casper pairs_flag = TRUE or 1

If currently not paired, casper pairs_flag = FALSE or 0

Upon output, this flag is readjusted by the routine to

reflect whether or to designate the aircraft as a pair.

Output result of casper_pairs_flag:

If casper_pairs_flag = 1 or TRUE, then paired

If casper_pairs_flag = 0 or FALSE, then not paired

Table 6.9.1 Range Pairs Test Parameters

Following is the C code that was used to determine CASPER pairing:

#define DMOD_TURN_ON 9721.6 /* 1.6 nm */

#define DMOD_TURN_OFF 10633 /* 1.75 nm */

#define THRESHOLD_TIME 30.0

void range_pairs_test (double range,double range_rate,int *casper pairs_flag)

63



{
double adjusted_range_rate;

double tau_mod;

if (range_rate > 10.0) {

/* perform diverging aircraft range test */

if (*casper pairs_flag == ON) {

/* casper pairs mode is on, test for turn off */

if (range > DMOD_TURN_OFF)

*casper_pairs_flag = OFF;
else

*casper_pairs_flag = ON;

} else {

/* casper pairs mode is off, test for turn on */

if (range > DMOD_TURN_ON)

*casper pairs_flag = OFF;
else

*casper pairs_flag = ON;

} else if (range_rate <= 10) {

/* perform converging aircraft range test */

/* compute adjusted range rate */

if (range_rate > - 10.0)

adju sted_range_rate = - 10.0;
else

adjusted_range_rate = range_rate;

if (*casper_pairs_flag == OFF)

/* casper mode is off, test for turn on */

tau_mod = -(range-

(DMOD_TURN_ON*DMOD_TURN_ON)/range)/adju sted_range_rate;
else

/* casper pairs mode is on, test for turn off */

tau_mod = -(range-

(DMOD_TURN_OFF*DMOD_TURN_OFF)/range)/adjusted_range_rate;

if ((tau_mod - THRESHOLD_TIME) <= 0.0)

*casper_pairs_flag = ON;
else

*casper pairs_flag = OFF;

64



6.10 On-Approach/Off Approach Determination

AILS requires knowledge as to whether or not an aircraft is on or off of it's approach. The

following criteria is used as a guideline:

Aircraft declared OFF APPROACH if either of the following conditions are true:

1. More than 2 dots of vertical deviation.

2. More than 2 dots of lateral deviation OR more than 400 ft of lateral deviation to either side

of the approach path.

6.11 Ellipse and Time Parameter Adjustments

When one or both aircraft are off-approach, the alert parameters are adjusted since we know

which aircraft is to blame for collision threats, as discussed in 2.8: Ellipse Size Adjustments If

Aircraft is Off Approach.

6.12 Data Requirements Summary and Default Values

Table 5.1.1 in section 5.1.1 describes the input/output parameters to the Larcalert_full

algorithm. Table 6.12.1 shows a summary of the input variables to AILS. Some of the

variables to be provided to AILS are created by the preprocessing algorithms described in

sections 6.1- 6.11. Other variables are algorithm design parameters that are simply set. The

remainder of this section summarizes the requirements for all variables that are to be set.

6.12.1 AILS Parameter Input Summary Table

Variable Class Characteristics Variables Description

Reference

own aircraft states changes with each osxpos, osypos, osgs, ostrk, Table 5.1.1

call ostrkdot, oshpos

adjacent aircraft changes with each ajxpos, ajypos, ajgs, ajtrk, Table 5.1.1

states call ajtrkdot, ajh

own approach constant osglide,ostch Table 3.5.1

adjacent approach constant ajglide,ajtch Table 3.5.1

adjacent approach constant ajx_dp_offset, ajy_dp_offset, Table 5.1.3

relative to own ajh_dp_offset Table 5.1.1

alerting parameters

algorithm

parameters

constant, but

parameters can be

swapped if aircraft

off approach

constant

alvup, alvdown, aldste,

protected_esc

trkratedb, turntime, tstep

Table 3.5.1

Table 5.1.1

Table 5.1.1

65



Variable Class

snap flags

Characteristics

depends on if

aircraft on approach

Variables

os_snap_flag, aj_snap_flag

Description

Reference

Table 5.1.1

Table 6.12.1 AILS Parameter Input Summary

The following subsections describe the default settings and values for the AILS alerting and

algorithm parameters. These are values used under the current AILS simulation and flight test

configurations.

6.12.2 Default AILS Alerting Parameter Values

The following list is a summary of all the current default settings for AILS algorithm and

alerting parameters:

aldst_e(LEVEL 1 DOWNRANGE) = 5000 (ft)

aldst_e(LEVEL 1 CROSSRANGE)= 1800 (ft)

alvup(LEVEL_I) =1800 (ft)

alvdown(LEVEL_l) = 1800 (ft)

altime(LEVEL_l) -- 30 (sec)

aldst_e(LEVEL 2 DOWNRANGE) = 3500 (ft)

aldst_e(LEVEL 2 CROSSRANGE)= 1300 (ft)

alvup(LEVEL_2) =1300 (ft)

alvdown(LEVEL_2) = 1300 (ft)

altime(LEVEL_2) = 22 (sec)

aldst_e(LEVEL 3 DOWNRANGE) = 3400 (ft)

aldst_e(LEVEL 3 CROSSRANGE)= 1250 (ft)

alvup(LEVEL_3) =1250 (ft)

alvdown(LEVEL_3) = 1250(ft)

altime(LEVEL_3) = 21 (sec)

aldst_e(LEVEL 4 DOWNRANGE) = 2500 (ft)

66



aldst_e(LEVEL 4 CROSSRANGE)= 900(ft)

alvup(LEVEL_4)=900 (ft)

alvdown(LEVEL_4)= 900 (ft)

altime(LEVEL_4)= 16 (sec)

6.12.3 Default AILS Algorithm Parameters

tstep = 0.5 (sec)

turntime = 99 (sec)

trkratedb = 0.00024 (rad/sec)

Note that selecting turntime = 99 sec, is effectively disabling the turn limit feature.

2.11 (page 12).

See section

6.12.4 Default Protected Escape Zone Parameters

The following parameter values represent a defeated or disabled setting for the protected escape

zone. The key switch to disable the zone is the lateral distance set to a very large negative

number. This moves the protected zone far out in the direction opposite of the adjacently

paired aircraft.

protected_esc[LATERAL] = -999999 (ft)

protected_esc[ABOVE] = 0 (ft)

protected_esc[BELOW] = 0 (ft)

protected_esc[AHEAD] = 0 (ft)

protected_esc[BEHIND] = 0 (ft)

6.13 Status Array Interpretation

The AILS main routine returns the status vector which indicates the instantaneous alerting

status of AILS. The instantaneous status indicators are listed here:

status[LEVEL_l] = 0 or 1 : 1 indicates AILS level 1 alert TRUE, 0 indicates FALSE

status[LEVEL_2] = 0 or 1 : lindicates AILS level 2 alert TRUE, 0 indicates FALSE

status[LEVEL_3] = 0 or 1 : 1 indicates AILS level 3 alert TRUE, 0 indicates FALSE

status[LEVEL_4] = 0 or 1 : 1 indicates AILS level 4 alert TRUE, 0 indicates FALSE

67



status[PROTECTED_ESC_LEV_3]= 0 or 1 : 1 indicatesown shipin adjacentship's
protectedescapezone,0 indicatesNO zoneviolation

status[PROTECTED_ESC_LEV_4]= 0 or 1 : 1 indicatesadjacentshipin own ship's
protectedescapezone,0 indicatesNO zoneviolation

Recallthefollowing alert statusdefinitions:

Level 1 : Cautionfor own shipintruding at adjacentship

Level 2 : Cautionfor adjacentshipintruding at own ship

Level 3 : Warningfor own shipintruding at adjacentship

Level4 : Warningfor adjacentshipintruding at own ship

Note thatthestatusvectorreturnedrepresentsAILS operationbasedon instantaneouscurrent
information. Thereis nomemory,persistence,or hysteresiseffecton thealert levels. It is up to
theuserandcalling routinesto providesuchconditionsif desired.(Forexample,oncealevel 4
alert is issued,thetop level operatorswill chooseto imposeapermanentlevel4 situation.
Likewise, somehysteresiseffectmaybedesiredfor thealertlevels to preventon/off toggling
statusalongtheboundaryconditions).

6.14 Static vs Dynamic Memory Allocation Requirements For AILS

Internal AILS has NO static variables.

Some of the variables that are involved in the preprocessing prior to AILS involve filters and

states which will require some of those variables to be static.

68



7 AILS EQUATIONS

This sectionshowsderivationsof someof theequationsthattheAILS algorithmsarebasedon.

7.1 Turn Radius

This section shows a derivation of turn radius that is used in a variety of locations.

2

Vg
Side accel - [Centripital acceleration] (1)

radius

m*g
Lift - [Vertical equilibrium] (2)

COS_

Side force = lift * sin_) = m * g * tan_) (3)

2

Vg
g * tan_ - (4)

radius

2

Vg
Radius - (5)

g * tan_)

7.2 Inside A Rotated Ellipse

This section derives the equations used to detect if one aircraft is inside an ellipse shaped

protected region of another aircraft. To accommodate non-parallel approach paths, the ellipse

is rotated by the difference in approach headings (Figure 7.2.1 Rotated Ellipse Coordinates).

dwnmg /

X

,Y)
(xx,yy)

L Y_

,/
crsmg

Figure 7.2.1 Rotated Ellipse Coordinates

69



First, thebasicequationsof anellipse.

X 2 y2

1 - dwnrng 2 + crsnrng 2

dwnrng2crsrng 2 = crsrng2x 2 + dwnrng2y 2

Then, the equations for a coordinate rotation.

x = xx cos _ - yy sin _

y = xx sin _ + yy cos _

Squaring these two equations:

x 2 = xx 2 cos2_ - 2 xx yy cos _ sin _ + yy2 sin 2

y2 = xx 2 sin2_ + 2 xx yy cos _ sin _ + yy2 cos 2

Then, substituting these back into equation (7)

dwnrng2crsrng 2

(6)

(7)

(8)

(9)

(10)

(11)

= crsrng2(xx 2 cos2_ - 2 xx yycos _sin _ + yy2 sin 2 _)

+ dwnrng2(xx 2 sin2_+ 2 xx yycos _ sin _ + yy2 cos 2 _)

(12)

and collecting terms.

dwnrng2crsrng 2 = (dwnrng 2 sin 2 _ + crsrng 2 cos2_)

+ (dwnrng 2 - crsrng2)2cos _ sin

+ (dwnrng 2 cos2_ +crsrng 2 sin 2 _)

Define 4 intermediate variables for convenience:

E1 = (dwnrng 2 sin 2 _ + crsrng 2 cos2_) (14)

E2 = (dwnrng 2 - crsrng2)2cos _ sin _ (15)

E3 = (dwnrng 2 cos2_ +crsrng 2 sin 2 _) (16)

E4 = dwnrng2crsrng 2 (17)

Then, the second aircraft is in the first aircraft's ellipse if:

E4 >= E1 XX 2 + E2 xx yy + E3 yy2

XX 2

xxyy

yy2 (13)

(18)

7.3 Inside Ellipse For Future Track

To check if an aircraft will be in the ellipse of another aircraft at the current time or a future

time, first the relative positions must be expressed.

70



dx(t) = xaj(t ) - Xos(t ) (19)

dy(t) = yaj(t) - Yos(t) (20)

To check if one aircraft is currently in the other aircraft's ellipse, equations (19) and (20) can be

used for xx and yy in equation (18). (This is performed in subroutine CHKRANGE.)

To check if one aircraft will be in the other aircraft's ellipse in the future, the relative positions

must be predicted in the future. (This is performed in subroutine CHKTRACK.)

_ d dx * cos trk * trkloc (21)
dxdt - d_- = vgaj - vg°° cos

_ d dx * sin trk * sin trkloc (22)
dydt - d_- = Vgaj - Vgoo

dx(t + r) = dx(t)+ dxdt* r (23)

dy(t + r) = dy(t)+ dydt* r (24)

Substituting equations (23) and (24) into equation (18) for xx and yy:

E4 = E1 (dx+dxdt*r) 2 + E2 (dx+dxdt*r) (dy+dydt*r)

+ E3 (dy + dydt * z')2 (25)

Gathering terms, this can be expressed as a quadratic equation for _.

a ,./.2 -1-b ,./.2 -1-C ---- 0 (26)

a = E1 dxdt 2 + E2 dxdt dydt+E3 dydt 2 (27)

b = 2 E1 dxdxdt 2 + E2 dxdydt + E2 dydxdt +2 E3 dydydt (2s)

c = E1 dx 2 + E2 dx dy+E3 dy 2 - E4 (29)

7.4 AILS Fan Equations

Figure 7.4.1 below shows how the equations for the aircraft position on the turn arc (xtrk, ytrk)

can be developed.

71



arcrad*cos(trk+trkdot*tpred)

arcrad*cos(trk)

x-axis

y=0

Aircraft

Position at

Time = tpred

Center

of Turn
Xtrk = x0 + arcrad*(sin(trk+trkdot*tpred) - sin(trk)}

Ytrk = y0 + arcrad*(cos(trk+trkdot*tpred) - cos(trk))

Figure 7.4.1 Calculation of Position on Turn Arc

Aircraft

Position at

Time = 0

X.yo

72



ADS-B

AILS

AJ

APL

ATC

Baro

CSPA

deg
DGPS

DME

DP

ECEF

EEM

EFIS

FMS

FOM

ft

GNSSU

GPS

IRS

IRU

LSB

kts

m

MAP

MASPS

nlTl

OS

rad

RTCA

S, sec

SLS

TBD

TCAS

TCP

UTC

VHF

8 AppendixA. Acronyms and Abbreviations

Automatic Dependent Surveillance-Broadcast

Airborne Information for Lateral Spacing

adjacent ship or other ship

AILS Path Length
Air Traffic Control

barometric

closely spaced parallel approaches

degree

Differential Global Positioning System

distance measuring equipment

datum point

Earth-Centered, Earth-Fixed

Emergency Escape Maneuver

Electronic Flight Instrument System

Flight Management System

figure of merit
foot or feet

Global Navigation System Sensor Unit

Global Positioning System

Inertial Reference System
Inertial Reference Unit

least significant bit
knots

meters

Missed Approach Procedure

Minimum Aviation System Performance Standards
nautical miles

own ship
radians

Radio Technical Commission for Aeronautics

second

Satellite Landing System
to be determined

Traffic Alert and Collision Avoidance System

threshold crossing point

universal time coordinate

Very High Frequency

73



AILS

AILS PathLength

ARINC

CASPER

CASPERtarget

glidepath

glideslopeangle

TCAS target

9 AppendixB. Glossary

The NASA program for developing alerting algorithms for closely spaced

parallel approaches. Also refers to the alerting logic used once the

aircraft are established on a parallel approach.

The distance from the runway threshold to the point where we start

separating the aircraft with AILS

Communications standard

The Honeywell program for developing alerting algorithm for closely

spaced parallel approaches. Also refers to the algorithms wrapped

around AILS that assign CASPER targets, do integrity checking, and

manage the interaction with TCAS.

Aircraft for which we provide blunder protection using the

CASPER/AILS system. All other aircraft are TCAS targets

The three-dimensional path in space that describes the approach path

The angle between the glidepath and a horizontal plane tangent to the

Earth's surface at the datum point

Aircraft for which collision avoidance protection is provided by TCAS.

This is true for all aircraft except those on a parallel runway for which we

use the AILS alerting algorithms for protection.

74



10 Appendix C. References

[1] Federal Aviation Administration. 1991. Precision Runway Monitor Demonstration

Report. Document DOT/FAA/RD-91/5 (February).

[2] Waller, Marvin., and Scanlon, Charles (editors). 1996. Proceedings of the NASA

Workshop on Flight Deck Centered Parallel Runway Approaches in Instrument

Meteorological Conditions, NASA Conference Publication 10191, Hampton, VA

(December).

[3] Jackson, Mike, 1997. "Description of AILS Alerting Algorithm, Revision 1," not

published (available from NASA LaRC or Honeywell).

[4] Carpenter, Brenda, and Kuchar, James, 1997. "Probability-Based Collision Alerting

Logic for Closely-Spaced Parallel Approach," Paper AIAA-97-0222. AIAA Aerospace

Sciences Meeting and Exhibit, Reno, NV (January).

[5] Radio Technical Commission for Aeronautics. 1998. Minimum Aviation Standards

Performance Specification for Automatic Dependent Surveillance-Broadcast, Document

RTCA DO-242 (February).

[6] Kuchar, James, 1996. "Methodology for Alerting-System Performance Evaluation," J.

of Guidance, Control, and Dynamics 19(2).

[7] Waller, Marvin (editor). 1998. Analysis of the Role of ATC in the AILS Process, NASA

Ad Hoc Team Report on ATC in IMC Close Parallel Runway Operations (May). Draft

report.

[8] Haissig, Christine, Corwin, Bill, Jackson, Mike,. 1999. "Designing an Airborne Alerting

System for Closely-Spaced Parallel Approaches," Paper AIAA-99-3986, AIAA GN&C, San

Diego, CA (August).

[9] Samanant, Paul, Jackson, Mike, Haissig, Christine, and Corwin, Bill, 2000.

"CASPER/AILS: An Integrated DGPS/ADS-B Airborne Alerting System For Closely Spaced

Parallel Approaches," to appear in the IEEE PLANS conference in March 2000.

[10] Jackson, Mike, Samanant, Paul, and Haissig, Christine, 2000. "Design and Analysis of

Airborne Alerting Algorithms for Closely Spaced Parallel Approaches," to appear in the AIAA

GN&C conference, August 2000.

75



R E PORT D O C U M ENTATI O N PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 2000 Contractor Report

4. TITLE AND SUBTITLE

Description of the AILS Alerting Algorithm

6. AUTHOR(S)
Paul Samanant and Mike Jackson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Technology Center
Mail Stop MN 65-2810

3660 Technology Drive
Minneapolis, MN 55418

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23681-2199

5. FUNDING NUMBERS

WU 576-02-11-17

PO L-10690

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/CR-2000-210109

11. SUPPLEMENTARY NOTES

Langley Technical Monitor Terry Abbott

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 3 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document provides a complete description of the Airborne Information for Lateral Spacing (AILS) alerting

algorithms. The purpose of AILS is to provide separation assurance between aircraft during simultaneous
approaches to closely spaced parallel runways. AILS will allow independent approaches to be flown in such

situations where dependent approaches were previously required (typically under Instrument Meteorological

Conditions (IMC)). This is achieved by providing multiple levels of alerting for pairs of aircraft that are in
parallel approach situations.

This document's scope is comprehensive and covers everything from general overviews, definitions, and
concepts down to algorithmic elements and equations. The entire algorithm is presented in complete and

detailed pseudo-code format. This can be used by software programmers to program AILS into a software
language. Additional supporting information is provided in the form of coordinate frame definitions, data

requirements, calling requirements as well as all necessary pre-processing and post-processing requirements.
This is important and required information for the implementation of AILS into an analysis, a simulation, or a

real-time system

14. SUBJECT TERMS

Alerting Algorithms; AILS Software design

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

88

16. PRICE CODE

A05

20. LIMITATION

OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSIStd. Z-39-18
298-102


